作为一名教学工作者,时常需要编写教案,借助教案可以更好地组织教学活动。那么优秀的教案是什么样的呢?这次漂亮的小编为您带来了三年级数学教案优秀4篇,在大家参照的同时,也可以分享一下给您最好的朋友。
【教学目标】
1.结合欣赏与绘制图案的过程,体会平移、旋转和对称在图案中的应用,并学会设计较复杂的对称图案。
2.参与收集、设计图案的活动,感受图案的美,培养健康的审美情趣。
【课堂实录】
(一)创设情境,建立模型
1.欣赏美丽的图案,感受图案的美和在现实生活中的应用。
在我们的现实生活中,美无处不在,请同学们欣赏这几幅图案,你能说一说看到这些图案的感受或知道图案代表的意义吗?
2.运用平移、旋转、对称的现象观察、探究美丽的复杂图案。
(1)每一幅图的图案是由哪个图形平移或旋转得到的?
(2)哪幅图案是对称的?(先独立思考后小组交流、汇报。)
3.生活中你还见过哪些图案是由一个简单图形经过平移、旋转或对称得到的?
先在小组内交流评议课前收集的图案是不是具有以上特征,再全班汇报交流。生活中有这么多美丽的复杂图案,它们都是怎样得到的?
(二)解释应用
1.你想不想也来设计一幅美丽的复杂图案呢?
(1)画出下面图形的对称图形(教材第24页)。
学生在书上独立画图,教师巡视。展示学生的作品,请画得又快又好的学生说说自己是怎样画的,在画图的过程中遇到哪些问题,对称图形有哪些特点。
(2)继续画下去(教材第24页)。
我们一起来欣赏,观察图案,它是由哪个简单图形运用什么现象,经过怎样的变化过程得到的。
(学生汇报。)
2.小结:你有什么收获?
利用简单图形经过平移、旋转或对称的方法设计的图案,在生活中的应用很广泛,我们能不能把一个简单图形经过旋转,设计出更美丽的图案呢?
【教学目标】
1.认识余数,知道余数的含义。
2.在初步理解有余数除法的基础上,掌握有余数的除法的计算方法。
3.初步培养学生观察、比较、综合的能力。
4.通过探究过程,使学生感受余数一定要比除数小,培养探究性学习能力。
【教学重点】
理解有余数的除法的意义,探究余数一定要比除数小。
【教具、学具】
三角形、正方形、圆形图片若干。
【教学过程】
一、游戏导入,激发兴趣
1. 考考老师:请同学们利用已经学过的找规律的知识,用学具设计一个规律,然后告诉老师,你是怎么摆的,接下来你想让老师猜几号学具,老师不用看就能猜出它是什么。不信,谁来考考老师?(可以请不同的学生试一试,学生很惊奇。)
2. 适时引入:想不想知道老师为什么能很快猜出来的?等你们学会了今天的知识,就知道老师为什么能很快猜出来的了。
[评析:从学生已有知识出发,用学生考老师的形式引入新课,这样做,既为学生创造了轻松愉快的学习氛围,同时也激发了学生的学习热情和探究新知的欲望。]
二、探索新知,建构概念
(一)明确图意,展开思维
利用课件呈现主题图:通过创设校园里学生课外活动的情境,引导学生在观察的过程中思考:哪些素材可以用除法计算。(如插旗子时按4面为一组的;跳绳时分成4人一组;打篮球的学生为5人一组;板报下面的花为3盆一组等。)
[评析:充分利用教材提供的主题图,引导学生展开观察、交流和解决问题等活动,强化学生对“平均分”的应用意识,为下面学习“有余数的除法”奠定基础。]
(二)实际操作,感受新知
1. 教学例题1。
(1)利用课件演示例1:国庆节到了,同学们打算将联欢会的会场用鲜花布置,小朋友先般来15盆花,他们打算每组摆5盆,可以摆几组?老师想请我们班的同学来分一分,你们愿意吗?
(2)动手操作:请小朋友拿出学具,用15个学具表示15盆花来摆一摆。
(3)提问思考:有15盆花,每5盆摆一组,摆成了几组?15盆花有没有摆完?想一想15里面有几个5?
(4)尝试列式:如果用计算的方法来解决这个问题。你能列出算式吗?
15÷5=3(组)
(5)明确写法:(结合操作思考)每5盆摆一组,摆成了几组?并结合具体的情境让学生说一说竖式中每一步所表示的意思,同时了解竖式中各部分的名称。
[评析:引导学生在已具备的表内除法知识的基础上进行有余数的除法的学习。学生虽然在实际生活中有一些感性的认识,但还缺乏清晰的认识和数学思考。因此,首先由情境引入例题,联系学生的实际生活,运用摆学具的方式感知除法的意义,同时通过理解表内除法竖式的含义,给学生创设自主建构知识的活动空间。]
2.教学例题2。
(1)课件演示例2:同学们将校园一角的23盆花全部搬到了会场,还是每5盆摆一组,最多可以摆成几组?
(2)动手操作:你们是不是也能用学具代替23盆花来摆一摆。看看每5盆摆一组,能不能全部分完?还剩几盆?剩下的够不够再分一组?
(3)认识余数:23里面最多有几个5?这余下的3盆不够再分一组,这个数你能给它起个名字吗?(板书课题:余数)
(4)尝试列式:23÷5=4(组)……3(盆)
(5)适时小结:为了分清余数和商,我们要在余数和商中间用6个小圆点隔开。我们把这样的除法,叫做有余数的除法。(接着板书课题:有“余数”的除法)
(6)小组讨论:如何列竖式?把自己的想法和同组的小朋友说一说。
(7)学生汇报。
(8)列出竖式:
3.观察比较:看看例1和例2的竖式,比一比,从这两道题的计算中你发现了什么?
4.尝试练习:选择两个算式用竖式计算。(一个正好分完,另一个不能正好分完。)
[评析:本环节教学,教师根据学生认知的“最近发展区”对新知识的学习进行准确定位,既为学生创设了“跳一跳,摘桃子”的思考平台,又为学生提供自主探究、合作交流的空间,使学生在认知过程中体会到探索的快乐和成功的喜悦。]
三、观察比较,理解概念
1. 探究关系:出示例3,引导学生运用小组分工合作的形式,先列式算一算,再引导学生讨论:观察余数与除数,你们发现了什么?
15÷5=3(组)
17÷5=3(组)……2(盆)
19÷5=3(组)……4(盆)
21÷5=4(组)……1(盆)
23÷5=4(组)……3(盆)
25÷5=5(组)
16÷5=3(组)……1(盆)
18÷5=3(组)……3(盆)
20÷5=4(组)
22÷5=4(组)……2(盆)
24÷5=4(组)……4(盆)
2.归纳总结:
(1)剩下不能再分的数才叫余数;
(2)计算有余数的除法,余数要比除数小。
[评析:本环节是在前两个例题的基础上,引导学生探究余数与除数的关系。教学中如果让每一个学生都来计算这一组题,势必花费学生很多的时间和精力,学生也会产生厌烦情绪;而采用小组分工合作的`形式,既减轻了学生的学习负担、提高课堂教学效率,又让学生真正体验到通过团队努力取得成功的快乐。]
四、巩固拓展,运用新知
1. 巩固题:第52页的“做一做”。(判断题,进一步明确“余数要比除数小”。)
2. 开放题:想一想在一道有余数的除法算式中,如果除数是8,余数有可能是几?如果余数是6,除数有可能是什么数?
3. 游戏题:“猜猜看”。
(课件呈现:一组有规律的图形,猜一猜第10个是什么图形、第18个是什么图形,运用课件验证。)
4. 拓展题:现在你们能想出老师为什么会很快猜出你们前面所摆的学具是什么了吗?你们也能运用今天学的“有余数的除法”知识,很快地猜出第24个、第30个图形是什么吗?
[评析:练习的设计充分体现了层次性、开放性、灵活性、启发性和挑战性。通过让学生进行不同类型的练习,可以有效激发学生的学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。尤其是最后一个练习,给学生一种恍然大悟的感觉,整节课前后呼应,使学生掌握的知识系统化、结构化。]
五、归纳小结,结束全课
小朋友,这节课你有什么新的收获?你体验最深的是什么?
教学目标:
1.经历探索乘数末尾有0的三位数乘一位数计算方法的过程,掌握其竖式的简便写法,能正确地计算这类算题。
2.在研究算法和解决实际问题的'过程中,培养合情推理能力和数学应用意识。
教学重点:
掌握乘数末尾有0的乘法的计算方法。
教学难点:
乘数末尾有0的乘法算式的简算。
教学准备:
多媒体课件。
教学过程:
一、复习铺垫
出示:3×2=7×2=13×2=3×20=7×200=21×4=
口算后讨论:你是怎样口算的?
二、教学新课
1.学习例题
⑴出示例题插图问:你从题中了解到哪些信息?你能提出什么数学问题?你能列出算式吗?
⑵指名说出口算方法和结果。问:你是怎样由4×12=48想到4×120=480的?
⑶小结。
2.教学“试一试”
⑴让学生在书上计算,指名板演。
⑵指名板演学生说说计算过程。
⑶问:第一题中乘数250末尾有一个0,积1500的末尾为什么有两个0?第二题算过7×9得63后,为什么积的末尾要添写2个0?
三、巩固练习
1.完成“想想做做”第1题。独立完成在书上,并进行评讲。
2.完成“想想做做”第3题。独立完成。组织讨论:每组上下两题有什么联系?计算方法有什么区别?
3.完成“想想做做’第4题。组织学生口算,体会他们之间的内在联系,掌握几百几十和几相乘的口算方法。
4.完成“想想做做”第5题。引导学生读题。问:你能看懂表的内容吗?让我们计算什么?学生填表。问:观察这张表,你有什么发现?
四、总结评价,点拨学法
这节课我们学习了什么新知识?你是怎样掌握的,先互相说一说,再告诉大家。
五、作业:完成“想想做做”第2.5.6题。
教学目标
1.使学生在理解的基础上认识归一应用题的结构特点,能正确地分析归一应用题的数量关系,掌握这类应用题的解答规律;学会列综合算式解答归一应用题.
2.培养学生学会有条理有根据的进行思考,提高分析、解答实际问题的能力.
3.使学生感受数学与生活的密切联系,激发学习兴趣;训练学生养成认真审题、动脑分析、仔细检验的好习惯.
教学重点
使学生了解归一应用题的基本结构和数量关系,会解答此类应用题.
教学难点
线段图的画法及检验方法.
教学过程
一、联系生活,激趣引入.
课前,可以布置任务:让学生调查各自所用的学习用品的价钱)
1.教师:我想买些学习用品做奖品,但是不知道哪种好,价钱又合适.正好同学们做了调查,谁愿意介绍一下. 学生介绍,如:这种钢笔很好用,每支8元. 师问:我要卖6支,需要多少钱?用到了我们学过的哪一数量关系? 列式:8×6=48(元)单价×数量=总价
2.教师:刚才我看到××的铅笔很好看,他告诉我买这3支铅笔共花了4元5角,我想买这样的10支,要花多少钱呢? 此时,学生可能会答出也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师则问:要想知道10支这样的铅笔要花多少钱,就要先求出什么?(单价) 根据哪一数量关系求单价?(总价÷数量=单价)
3.教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试讨论,学习新知.
1.出示例3:学校买3个书架,一共用75元.照这样计算,买5个要用多少元?
(1)请学生自由出声读题,找出已知条件和问题
(2)小组讨论:尝试用线段图表示题目的条件和问题并分析题里的数量关系.
(3)教师提问:“照这样计算”是什么意思?按照题目的意思应该先算什么?再算什么? (4)各组汇报,全班重点围绕“线段图的画法”、“照这样计算”的含义展开讨论:
“照这样计算”即按照3个书架是75元这样的单价去计算5个书架的价钱.每个书架就是75÷3=25(元),
(5)按照刚才的思路解题.
a.每个书架多少元? 75÷3=25(元)
b.买5个要用多少元? 25×5=125(元)
教师让学生独立列出综合算式并订正:75÷3×5 教师提问:这道题怎样检验?请检验这道题.
教师指名完整地说说这道题的解题思路.
引导学生思考:如果把第三个条件改为“6个、9个、12个”,问题不变,仍求要用多少元?怎样列式?为什么?
2.将第三个条件改为“200元”,问题改为“可以买多少个书架?”成为例4.
出示例4:学校买了3个书架,一共用75元.照这样计算,200元可以买多少个书架? 让学生独立画线段图,理解题意.
重点讨论:线段图应该怎样改?这道题要先求什么?
③学生独立解题
.a.每个书架多少元? 75÷3=25(元)
b.200元可以买多少个书架? 200÷25=8(个)
④共同讨论:怎样列综合算式?为什么要给75+3加上小括号? 200÷(75÷3)
⑤教师提问:这道题怎样检验?
⑥引导学生说说自己的解题思路是什么?改为“400元”、“800元”、“1000元”,问题不变,应该怎样列式?
3.请同学们自己试做下面两道题.
①一辆汽车2小时行70千米.照这样计算,7小时行多少千米?
②一台磨面机5小时磨小麦250千克.照这样计算,磨1750千克小麦,需要几小时?
订正:
①a.每小时行多少千米? 70÷2=35(千米)
b.7小时行多少千米? 35×7=245(千米)70÷2×7
②a.每小时磨小麦多少千克? 250÷5=50(千克)
b.磨1750千克小麦需要几小时? 1750÷50=35(时)1750÷(250÷5)
请学生分别说说各题的解题思路是什么?
教师提问:比较例3、例4和试做(3),每两道题之间的相同地方是什么?不同地方是什么?解题思路上有什么相同地方? 使学生明确:从应用题的结构上看,前两个条件相同(给出了总数量和份数),都有“照这样计算”的语句,第三个条件和问题不同.从解题思路上看,第一步都要求出单位数量(即每份数是多少、单价、速度等),教师点题,出示课题:归一应用题.
三、巩固练习,发展思维.
1.独立分析题目的条件和问题,找出先求什么,再列综合算式. ①小林看一本故事书,3天看了24页.照这样计算,7天可以看多少页? ②小林看一本故事书,3天看了24页.照这样计算,全书128页,多少天可以看完?
2.在正确的算式后面画“√”,并说出为什么.
①小明5分钟走300米,照这样的速度,他家离学校720米,要走多少分钟? A.300÷5×720B.720÷(300÷5) C.720÷5÷300D.720÷300÷5
②小明5分钟走300米,照这样的速度,他从家到学校要走15分钟,他家离学校有多少米? A.300×5×15B.300×(15÷5)C.300÷5×15
(3)用不同的方法解答下面的应用题.
某食堂4天用大米800千克,照这样计算,1600千克大米够吃几天?
四、课堂小结,质疑问难.
这节课学习的是什么?应用题的结构有什么特点?(先求出一份数是多少)解题的思路是什么?解题时应该注意什么问题?同学们还有不明白的问题吗?
五、布置作业.
1.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,12个同学一共可以糊多少个纸盒?
2.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,要糊154个纸盒需要多少个同学?