作为一名人民教师,往往需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。那么优秀的教案是什么样的呢?
练习内容:除数是整数的小数除法的巩固练习。(教材练习四第9~14题。)
练习要求:使学生掌握除数是整数的小数除法的计算法则,能比较熟练和正确地计算除数是整数的小数除法。
练习重点:计算除数是整数的小数除法中,除到被除数的末尾仍有余数以及被除数比除数小的这两种题。
教具准备:投影、小黑板
练习过程:
一、激发
1.口算:(P.19页11题。)1.230.4864.623140.56.840.72120.71.10.7249.665.21312.550.125
生先回答:(1)在什么情况下,小数除法中商的最高位是0?(2)商的小数点要和谁的小数点对齐?2.错题剖析⑴5.125=2.4⑵100500=50.24525)5.1100)5005050010001000⑶0.81917=0.47⑷4025=160.471617)0.81925)40682513915013915000
二、尝试
P.19页10题:先判断下面各题的`商哪些是小于1的,再计算。5.046210.6657.7995543632.93370.46228(1)生判断哪些题的商是小于1的,为什么?(2)生计算,看自己的判断是否正确。(3)说一说:除到被除数的末尾仍有余数时怎么办?(4)集体订正。
2.P.19页12题:一个机械化养鸡场的产蛋鸡,平均每只每年产蛋294个。如果按照每16个蛋重1千克计算,平均每只鸡每年产蛋多少千克?⑴指导学生分析数量关系,理解列出的算式的含义,⑵让学生做完此题并集体订正。
3.P.19页13题:一只大象体重5.1吨,是一头黄牛的15倍。这只大象比这头黄牛中多少吨?⑴指导学生分析数量关系。⑵数量关系:黄牛的体重15=大象的体重(5.1吨)⑶让学生列式计算出结果,集体订正。
三、示范:
P.19页15题:一个煤矿的一号井每日产煤961吨,是二号井每日产煤吨数的2倍,三号井产煤每日比二号井多135.4吨。这3口井平均每口井日产煤多少吨?分析与解:要求这3口井平均每口井日产煤多少吨,就要用三口井日产煤的总吨数除以3,即:(961+9612+9612+135.4)3
2.P.19页16题:小红的父亲给她2.5元去买书。买书时她发现这些钱还不够,又从自己积蓄的钱中拿出一些才够。他原来积蓄的钱有1.24元,是拿出的4倍。这次买书花了多少钱?分析与解:小红买书的钱包括2部分:父亲给的钱和自己出的钱,列式为:1.244+2.53.P.19页思考题:如果把一根木料据成3段要用9分,那么用同样的速度把这根木料锯成4段,要用多少分?分析与解:把一根木料锯成3段实际只要锯(3-1)次,如果局成4段只要(4-1)次,可以解答为:9(3-1)(4-1)
四、作业
P.18页9题,P.19页14题。
一、学习新知:
1、出示例题的表格:
给一点时间观察该表,问,你想到了哪个关系式?(单价=总价÷数量)
分别列式:9。6÷3 12÷5 5。7÷6
昨天已预习过小数除法,这三题你都会么?
分别请认为会的学生上黑板板演。
讲评(可能存在的问题):
题一:注意小数点对齐问题
题二:注意整数部分除完后,要添上小数点补上0之后继续除
题三:注意商0后,不会乘、减、移
除法竖式中间过程中是不出现小数点的。
也可结合具体的`金额来说说算理。
指出:小数除法在除的时候,先除整数部分,除完整数部分添小数点继续除小数部分。除到哪一位,就在哪一位上商;不够商1的时候就商0;除到有余数的时候需要补0继续除。
2、检查自己的预习作业,订正错误。
老师也可挑一些典型错误集体讲评。
3、指名完成试一试。可挑巡视中有错误的学生板演。
强调:商到哪一位不够商1要商0。
4、练一练:先找出错在哪里,再改正过来。
指名说说错在哪里。其中前两题可在原题上加小数点,第3题需要另外写竖式后计算。
二、布置作业:
1、口算第1题上面的3题。
2、作业本上完成第1题剩下3题,第2题,第3题。
一、教学理念
教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”
笔者认为教学中成功的关健在于:教师的“教”立足于学生的“学”。
1、从学生的思维实际出发,激发探索知识的愿望,不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程当中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程当中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。
2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。
数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。因此,学生是数学学习的主人,教师应激发学生的学习积极性,要向学生提供充分从事数学活动的机会,帮助他们掌握基本的数学知识、技能、思想、方法,获得丰富的数学活动经验。
二、教学思路
一个数除以小数”即“除数是小数的除法”是九年义务教育六年制小学数学第九册的重点知识之一。本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法。
1、调查分析
在教学小数除法前一个星期,笔者对曾对班内十五位同学进行了一次简单的调查,(调查结果见附表)笔者认为学生存在很大的教学潜能,这些潜在的“能源”就是教学的依据,教学的资源。从上表可以得出以下结论:
(1)学生对小数除法的基础掌握的比较巩固。
(2)学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。
(3)优秀学生与学习困难生对算理的。理解在思维水平上有较大差异。但对竖式书写都不规范。
笔者认为小数除法如果按照教材按部就班教学是很不合理的,不仅浪费教学时间,而且不利于学生从整体上把握小数除法,不利于知识的系统性的形成,更不利于学生对知识的建构。因此,笔者选择了重组教材。(把例6例7与例8有机的结合在一起)
2、利用迁移,明确转化原理
理解除数是小数的除法的计算法则的算理
(3)、移位练习
3、试做例题,掌握转化方法
明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:
①学生试做例题6例题7,并讲出每个例题小数点移位的方法。
②学生试做例8
③引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:
(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。
(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。
(3)要注意小数除法里余数的数值问题。对这一问题可举例说明。如:57。4÷24,要使学生懂得余数是2。2,而不是22。
4、专项训练,提高“转化”技能
除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。针对上述情况可作专项训练:
①竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。
②横式移位练习。练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。
教学过程
(一)复习导入
1.要使下列各小数变成整数,必须分别把它们扩大多少倍?小数点怎样移动?
1.2 0.67 0.725 0.003
2.把下面的数分别扩大10倍、100倍、1000倍是多少?
1.342,15,0.5,2.07。
3.填写下表。
根据上表,说说被除数、除数和商之间有什么变化规律。(被除数和除数同时扩大或缩小相同的倍数,商不变。)
根据商不变的性质填空,并说明理由。
(1)5628÷28=201;(2)56280÷280=;
(3)562800÷=201;(4)562。8÷2。8=。
(重点强调(4)的理由。(4)式与(1)式比较,被除数、除数都缩小了10倍,所以商不变,还是201,即562。8÷2。8=5628÷28=201)
(该环节的设计意图是通过学生的讲与练,理解其转化原理是:当除数由小数变成整数时,除数扩大10倍、100倍、1000倍……被除数也应扩大同样的倍数。)
(二)探究算理归纳法则
1.学习例6:
一根钢筋长3。6米,如果把它截成0。4米长的小段。可以截几段?
(1)学生审题列式:3。6÷0。4。
(2)揭示课题:
这个算式与我们以前学习的除法有什么不同?(除数由整数变成了小数。)
今天我们一起来研究“一个数除以小数”。(板书课题:一个数除以小数。)
(3)探究算理。
①思考:我们学习了除数是整数的小数除法,现在除数是小数该怎样计算呢?
(把除数转化成整数。)
怎样把除数转化成整数呢?
②学生试做:
板演学生做的结果,并由学生讲解:
解法1:把单位名称“米”转换成厘米来计算。
3。6米÷0。4米=36厘米÷4厘米=9(段)。
解法2:
答:可以截成9段。
讲算理:(为什么把被除数、除数分别扩大10倍?)
把除数0。4转化成整数4,扩大了10倍。根据商不变的性质,要使商不变,被除数3。6也应扩大10倍是36。
小结:这道题我们可以通过哪些方法把除数转化成整数?
(①改写单位名称;②利用商不变的性质。)
(3)练习:完成例7
思考:你用哪种方法转化?为什么?
同桌互相说说转化的方法及道理。独立计算后,订正。例7里的余数15表示多少?
强调:利用商不变的性质,把被除数和除数同时扩大多少倍,由哪个数的小数位数决定?
(由除数的小数位数决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如0。756÷0。18=75。6÷18。)
(设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)
2.学习例8:买0。75千克油用3。3元。每千克油的价格是多少元?
学生列式:3。3÷0。75。
(1)要把除数0。75变成整数,怎样转化?(把除数0。75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)
(2)被除数3。3扩大100。倍是多少?(3。3扩大100。倍是330,小数部分位数不够在末尾补“0”。)
(3)学生试做:
(3)比较例6、7与例8有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)
(4)练习:课本P49练一练第三题学生独立完成后,归纳小结。
(设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题,启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。让学生在充分积累经验的基础上归纳出除数是小数的除法的计算法则,会收到水道渠成的效果)
(三)展开练习深化认识
1.(1)不计算,把下面各式改写成除数是整数的算式。
(2)下面各式错在哪里,应怎样改正?
2.根据10.44÷0.725=14.4,填空:
(1)104.4÷7.25=;(2)1044÷=14.4;
(3)÷0.0725=14.4;(4)10.44÷7.25=;
(5)1.044÷0.725=;(6)1.044÷7.25=。
3.(3)选出与各组中商相等的算式。
A。4。83÷0。7 B。0。225÷0。15
483÷7 0。483÷7 48。3÷7
225÷15 2。25÷15 22。5÷15
4.口算:
1。2÷0。3=0。24÷0。08=0。15÷0。01=2。8÷4=
2。6÷0。2=4。6÷4。6=3。8÷0。19=2。5÷0。05=
(设计意图:旨在通过各种形式的练习提高学生学习兴趣,巩固法则,强化重点,突破难点)
(四)回顾总结
思考:除数是小数的除法应怎样计算?讨论得出(填空):除数是小数的除法的计算法则是:除数是小数的除法,先移动的小数点,使它变成;除数的小数点向右移动几位,被除数的小数点也移动(位数不够的,在被除数的用“0”补足);然后按照除数是的小数除法进行计算。看书P46--49,划出重点词语。
1、小数除法的意义:同整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要在余数后面添0再除。
3、除数是小数的除法的计算方法:先把除数扩大,使除数变成整数,再将被除数和除数扩大相同的倍数,然后按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾添上小数点,用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变的性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
小数除法的意义和除数是整数的小数除法
教学目标
(一)理解小数除法的意义,掌握除数是整数的小数除法的计算方法。
(二)通过对算理的理解,培养逻辑思维能力,提高计算能力。
教学重点和难点
重点:理解并掌握除数是整数的小数除法的计算方法。
难点:掌握整数除以整数不能整除时,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。
教学过程设计
(一)复习准备
1.填空:
(1)0.32里面含有32个( );
(2)1.2里面含有12个( );
(3)0.25里面含有( )个百分之一;
(4)2.4里面含有( )个十分之一;
(5)8里面含有( )个十分之一;
(6)0.15里面有( )个千分之一。
2.列竖式计算:
把2145平均分成15份,每份是多少?
2145÷15=143
3.复习整数除法的意义。
(1)一筒奶粉500克,3筒奶粉多少克?
(2)3筒奶粉1500克,1筒奶粉多少克?
(3)1筒奶粉500克,几筒奶粉1500克?
学生列式计算:
(1)500×3=1500(克);
(2)1500÷3=500(克);
(3)1500÷500=3(筒)。
比较两个除法算式与乘法算式的关系,说出整数除法的意义:
已知两个因数的积与其中的一个因数,求另一个因数的运算。
(二)学习新课
1.理解小数除法的意义。
将上面三题中的单位名称“克”改为“千克”:
(1)1筒奶粉0.5千克,3筒奶粉多少千克?
(2)3筒奶粉1.5千克,1筒奶粉多少千克?
(3)1筒奶粉0.5千克,几筒奶粉1.5千克?
学生列式计算:
(1)0.5×3=1.5(千克);
(2)1.5÷3=0.5(千克);
(3)1.5÷0.5=3(筒)。
观察思考:两个除法算式与乘法算式有什么关系?除法算式的意义是什么?
讨论后得出:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
练习:P14“做一做”。
2.研究除数是整数的小数除法的计算方法。
(1)学习例1:
服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?
①学生列式:21.45÷15=
②学生观察这个算式与以前学习的除法有什么不同?(被除数是小数。)
③引出问题:被除数是小数,其中的小数点应如何处理呢?
④学生试做。
⑤学生讲算理。
针对错例,讨论分析原因;针对正确的重点讲清以下几点:
21除15商1余6,余下的6除以15,不够除怎么办?(把6个一化成低一级单位表示的数,即60个十分之一,再和下一位上原有的4个十分之一合在一起,是64个十分之一,继续除。)
除到十分位余4怎么办?(把十分位上的4化成40个百分之一,并与被除数中原来百分位上的数5合在一起,是45个百分之一,继续除下去。)
商的小数点如何确定?为什么?(当除到十分位,用64个十分之一除以15,商的4表示4个十分之一,应写在十分位上,所以在个位1的右边点上小数点)
(2)练习:P15“做一做”。
68.8÷4= 85.44÷16=
学生独立完成后,同桌互相讲算理。
小结
思考:商的小数点与什么有关?
讨论得出:商的小数点要和被除数的小数点对齐。
(3)学习例2:
永丰乡原来有拖拉机36台,现在有117台。现在拖拉机的台数是原来的多少倍?
①学生列式:117÷36;
②学生试做:
③117除以36商3余9,能不能作为结果?
不能作为结果怎么办?(继续除。)
怎样做才能继续除?(把9个一看成90个十分之一。)
直接在个位的右边添上0行吗?应该怎样添?(直接在个位的右边添0不行,如果这样9个一就变成了90个一,数的大小发生了变化。为了使数的大小不变,应在个位的右边先点上小数点后,再添上0,使9个一变成了90个十分之一。)
④学生继续做完,讲出道理。
(36除90个十分之一,商2余18。因为商表示2个十分之一,因此在商里3的右边点上小数点。18个十分之一除以36,不够商1个十分之一,再添0,化成180个百分之一,继续除。商5个百分之一,把5写在百分位上。)
教师指出:像例2这样的小数除法除到最后没有余数就叫除尽了。
(4)练习:P15“做一做”。
25.5÷6 86÷16
学生独立完成后,订正,找出错题,分析原因。
(5)总结
思考:今天我们计算的除数是整数的小数除法与整数除法有哪些相同的地方,哪些不同的地方?
讨论得出除数是整数的小数除法的计算法则:
除数是整数的。小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0继续除。
(三)巩固反馈
1.写出下列竖式中商的小数点。
2.把下面的题做完。
3.课本:P17:1,2。
4.作业:P17:3,4。
课堂教学设计说明
小数除法的意义是以整数除法的意义为基础的。通过改变单位名称把整数乘除法算式改写成小数乘除法算式。引导学生观察比较,使学生顺利理解小数除法的意义与整数除法的意义相同。
除数是整数的小数除法,在引导学生充分感知的基础上明确算理,在与整数除法的比较中总结出除数是整数的小数除法的计算法则。
练习中针对重点、难点设计了专项练习,使新知识在学生原有的认知结构中“生根”,使原有的认知结构得到发展。练习过程中重视反馈,抓住学生出现的问题,及时分析、弥补,把问题消灭在课堂上。
板书设计
例1 21.45÷15
=1.43(米)
答:平均每件用布1.43米。
例2 117÷36
=3.25(米)
答:现在拖拉机的台数是原来的3.25倍。
新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”
“除数是小数的除法” 即一个数除以小数”,是九年义务教育六年制小学数学第九册的重点知识之一。本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法进行计算。教学 由于除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。在教学时针对这些情况我作了以下专项训练:
①.竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。
②.横式移位练习。练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。
教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。因此,学生是数学学习的主人,教师应激发学生的学习积极性,要向学生提供充分从事数学活动的机会,帮助他们掌握基本的数学知识、技能、思想、方法,获得丰富的数学活动经验。
教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”
教学中成功的关健在于:教师的“教”应立足于学生的“学”。一个数除以小数”即“除数是小数的除法”是九年义务教育六年制小学数学第九册的重点知识之一。本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法进行计算。在教学时,必须注意以下几点:
1、从学生的思维实际出发,激发探索知识的愿望。因为不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。
2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如当学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。
鉴于以上这几点的思圪,我私下以为小数除法如果按照教材按部就班教学是很不合理的,不仅浪费教学时间,而且不利于学生从整体上把握小数除法,不利于知识的系统性的形成,更不利于学生对知识的建构。因此,可选择重组教材。(把例6例7与例8有机的结合在一起)。
由于除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。针对这些情况可作专项训练:
①.竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。
②.横式移位练习。练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。因此,学生是数学学习的主人,教师应激发学生的学习积极性,要向学生提供充分从事数学活动的机会,帮助他们掌握基本的数学知识、技能、思想、方法,获得丰富的数学活动经验。
教学目标
(一)理解小数除法的意义,掌握除数是整数的小数除法的计算方法。
(二)通过对算理的理解,培养逻辑思维能力,提高计算能力。
教学重点和难点
重点:理解并掌握除数是整数的小数除法的计算方法。
难点:掌握整数除以整数不能整除时,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。
教学过程设计
(一)复习准备
1.填空:
(1)0.32里面含有32个( );
(2)1.2里面含有12个( );
(3)0.25里面含有( )个百分之一;
(4)2.4里面含有( )个十分之一;
(5)8里面含有( )个十分之一;
(6)0.15里面有( )个千分之一。
2.列竖式计算:
把2145平均分成15份,每份是多少?
2145÷15=143
3.复习整数除法的意义。
(1)一筒奶粉500克,3筒奶粉多少克?
(2)3筒奶粉1500克,1筒奶粉多少克?
(3)1筒奶粉500克,几筒奶粉1500克?
学生列式计算:
(1)500×3=1500(克);
(2)1500÷3=500(克);
(3)1500÷500=3(筒)。
比较两个除法算式与乘法算式的关系,说出整数除法的意义:
已知两个因数的积与其中的一个因数,求另一个因数的运算。
(二)学习新课
1.理解小数除法的意义。
将上面三题中的单位名称“克”改为“千克”:
(1)1筒奶粉0.5千克,3筒奶粉多少千克?
(2)3筒奶粉1.5千克,1筒奶粉多少千克?
(3)1筒奶粉0.5千克,几筒奶粉1.5千克?
学生列式计算:
(1)0.5×3=1.5(千克);
(2)1.5÷3=0.5(千克);
(3)1.5÷0.5=3(筒)。
观察思考:两个除法算式与乘法算式有什么关系?除法算式的意义是什么?
讨论后得出:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
练习:P14“做一做”。
2.研究除数是整数的小数除法的计算方法。
(1)学习例1:
服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?
①学生列式:21.45÷15=
②学生观察这个算式与以前学习的除法有什么不同?(被除数是小数。)
③引出问题:被除数是小数,其中的小数点应如何处理呢?
④学生试做。
⑤学生讲算理。
针对错例,讨论分析原因;针对正确的重点讲清以下几点:
21除15商1余6,余下的6除以15,不够除怎么办?(把6个一化成低一级单位表示的数,即60个十分之一,再和下一位上原有的4个十分之一合在一起,是64个十分之一,继续除。)
除到十分位余4怎么办?(把十分位上的4化成40个百分之一,并与被除数中原来百分位上的数5合在一起,是45个百分之一,继续除下去。)
商的小数点如何确定?为什么?(当除到十分位,用64个十分之一除以15,商的4表示4个十分之一,应写在十分位上,所以在个位1的右边点上小数点)
(2)练习:P15“做一做”。
68.8÷4= 85.44÷16=
教学内容:
教科书第68~69页,例1、试一试、练一练,练习十二第1~3题。
教学目标:
1、使学生在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。
2、使学生在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括及合情推理能力,感受数学探索活动的乐趣。
3、在解决实际问题中体会数学计算在生活中的广泛应用。
教学重点:
小数乘整数的计算方法。
教学难点:
确定积的小数点位置。
教具:
课件。学具:计算器。
教学过程:
一、明确目标,提出课题。
师:同学们,有关小数的计算,我们已经学过了哪些?(指名提问)那么猜猜看,有关小数的计算还得有哪些?
师:是的,这节课我们就一起来研究有关“小数的乘法和除法”的第一课时“小数乘整数”。(板书课题。)
二、自主探究,习得方法。
(一)依据信息,提出问题。
1、出示例题场景图,提问:请看屏幕,从图中你能知道什么?
生1:夏天每千克西瓜0.8元,冬天每千克西瓜2.35元。(好的,你说。)
生2:冬天的西瓜比夏天贵。
说明:是的,反季节的水果价格比较贵。
2、提出问题。
师:根据这些信息,要求“夏天买3千克西瓜要多少元?”,你会列式吗?学生列式。同意吗?
(二)解决问题1。
1、尝试。
激发:0.8×3就是小数乘整数,能不能自己想办法算出得数?先想一想,再在练习本上算一算。算好了,请举手。
学生思考、计算,教师巡视了解学生用的方法。
2、交流。
师:算好了,谁先来说说?
生1:用加法:0.8+0.8+0.8=2.4。
引导:板书0.8+0.8+0.8,问:怎么算?想三八二十四,写4进2。
3个0.8相加算出结果,也就是0.8×3表示什么?
说明:是的,小数乘法的意义和整数乘法的意义相同。
生2:0.8元=8角8×3=24角24角=2.4元
引导:你有想到这种方法吗?有想到的请举手。问:为什么要把0.8元换算成8角?也就是把小数0.8换算成了整数8。(板书:小数―整数)
评价:很好,能用元角分的单位换算,计算出结果。
生3:因为8×3=24,所以0.8×3=2.4。
引导:有这样想过的请举手。你是怎么想的?这样想有没有什么道理呢?我们一起来看,这里的8根据小数的意义,可以看做…(8个0.1),8个0.1乘3就是…24个0.1,24个0.1就是2.4。是这样吗?
评价:能把新知识转化成了旧知识。(引导语:0.8乘3是求几个0.8相加的和?0.8元也可以看成是几角?)
3、比较。
师:比较一下这两种方法,在算0.8×3时,有什么相同的地方?都想到了什么?〖8×3〗也就是都把小数乘整数变成了…整数乘整数。
4、列竖式。
师:还有不同的算法吗?你说我来写,先写…0.8,再乘3,3写在哪儿?(板书好再问)有没有不同的意见?现在有两种写法,你认为那一种更好一些呢?(如果只有一种,问:都认为写在这儿,为什么?)
在学生充分说的基础上,说明:把小数0.8先看成整数8计算,也就是把0.8的什么先不看?(根据回答遮住小数点)8就跟…3对齐了。接着计算,三八二十四。根据我们前面的探索,这里乘得的积应该是几位小数?因数中的小数是几位小数。共3页,当前第1页123
那么0.8×3=2.4,我们一起口答。
(三)解决问题2。
1、列式。
师:如果,冬天也买3千克西瓜要多少元?谁来列式?2.35×3也是小数乘整数,它表示什么?
2、尝试列竖式计算。
师:这道题比刚才这道题要难了,敢不敢尝试?好,在练习本上算一算。
学生计算,老师巡视。
3、展示。
师:算好了,谁先来说说你是怎么算的?
问:3写在哪儿?为什么?小数点写在哪儿?是不是等于7.05,我还可以用什么方法计算?(板书加法)得数是一样的。
我们来看这里因数中的小数是几位小数,积有几位小数?
好的,2.35×3=7.05,一起口答。
4、对比。
师:同学们,通过这两道题的计算,你发现了什么?(末位对齐或小数的位数问题)观察这两题的因数与积你发现了什么?能不能接着往下猜?也就是说因数里有…,积就有…。(板书:因数里有几位小数,积就有几位小数?)
(四)探索小数点的位置。
1、猜想。
师:两道题就能确定这是一条规律了?我们再来做几道题验证一下,好不好?出示4.76×12,你猜积有几位小数?你能不能也举一些像这样的乘法式子让其他同学猜猜积有几位小数?最后一次机会,谁来说个小数位数多些的?
2、验证。
师:下面拿出计算器,准备好,请听题。第一题…
算好的请举手。你说?57.12是几位小数,证明我们的判断是…正确的。第二题…。
师:请把计算器收起来。同学们经过刚才的计算和验证,证明了什么?(指板书)我们就能确定这是一条规律。
3、判断。
师:根据这条规律,请你来当小法官。
(1)下面的计算,积的小数点位置正确吗?0.12×4=4.8
师:为什么?怎么改?
(2)在爱心捐款活动中,五年级同学决定把收废品的钱捐给希望小学,共收集了废品32千克,每千克0.84元。
0.84×32=2688元
师:同学们,本来只有二十几元的钱,生活委员却算成了2688元,听到这你有什么感受?
(五)总结小数乘整数的计算方法。
师:同学们,学到现在小数乘整数你会算了吗?回顾一下我们刚才的计算过程,�
小结:计算小数乘整数时,一般先把小数看成整数,然后按照整数乘法的计算方法进行计算,最后看因数有几位,就从积的右边起数出几位点上小数点。
过渡:同学们,会算了,我们来练练身手好吗?
三、巩固延伸。
1、练一练的第1题。
请翻开书,第69页做练一练第一题。
最后两题如果感觉不够算,可以写在练习本上。
拿上一位同学的作业,讲评:
(1)第一小题,对吗?你是怎么算的?
(2)第二小题,对吗?(你有什么建议?或这个零为什么要画去?)小数乘法也一样要化简。
(3)第三小题,有意见吗?你有什么建议?
哦,把小数先看成整数,那么这个地方,还应不应该有小数点,而应该在…结果点上小数点。要不要改一改?
(4)(找对的同学)第四小题,现在我们来看这位同学做的对吗?对的请举手。
师:通过这几道题的计算,你觉得小数乘整数计算时有什么地方要提醒大家的?(数位末位对齐、小数点、末尾有零要化简、竖式的中间不用点小数点)
2、练一练的第2题。
师:提醒得很到位。出示14.8×23,现在不用计算,只要知道哪个算式的得数,你就能知道14.8×23的得数?共3页,当前第2页123
告诉你148×23=3404,能告诉我14.8×23的结果吗?你是怎么想的?
再来148×2.3,得数多少?0.148×23呢?
出示□×□=34.04,方框里能填哪些数?
师:你很聪明,同学们请看是一位小数,也是一位小数,一位小数乘一位小数积是不是两位小数呢?以后我们还会再研究小数乘小数的计算方法。
3、解决实际问题。
过渡:利用今天学的知识我们来解决一些实际问题。
(1)出示:2008年,就是北京奥运会了。为庆祝奥运会上海有位大学生很有创意,独自一人骑自行车从上海出发去北京,每天约行92.4千米,经过15天到达北京。而且还带着一份长102米,宽0.98米的“万人签名支持奥运”条幅,送给北京的奥组委。
(2)根据这些信息你能解决哪些数学问题?好,自己给自己提出一个问题,算一算。
(3)通过计算,你体会到了什么?
四、反思回顾。
师:同学们,今天我们学习小数乘整数,你有什么收获?
教学内容:教科书第70页的例5、例6、“试一试”“练一练”,练习十二的第4—7题。
教学目标:
1、使学生理解并掌握由小数点向左移动引起小数大小变化的规律;能应用规律正确口算一个小数除以10、100、1000……的商。
2、在探索规律的过程中,培养学生初步的观察,比较,归纳,概括的能力和主动探索数学规律的兴趣。
教学重点:改写时应该怎样想
教学难点:改写时应该怎样想,如果位数不够,要用“0”补足。
教学过程:
一、复习
二、教学小数除以整数
1、学生共同研究相同的对象。
(1)、出示例5:21.5乘除以10、100、1000各是多少?
(2)学生用计算器计算21.5÷10、100、1000的商
指名说说计算结果,并照下面的样子板书:
21.5÷10 =2.15
21.5÷100 =0.215
21.5÷1000 =0.0215
(3)引导观察、比较:每次除得的商与被除数21.5比较,小数点的位置有什么变化?
把一个小数除以10,就要把这个小数的小数点向什么方向移动几位?把一个小数除以100、1000呢?
(4)充实感性材料:以小组为单位,每组任意找2-3个小数,分别把它除以10,100,1000,看看小数点位置的变化情况。并在小组里交流。
(5)归纳:通过计算,�
注意:在移动小数点的位置时,如果数里原有位数不够,要用“0”补足,要指导学生怎样补“0”,弄清楚补在哪里,补几个“0”。如果小数点向右移动,原来数的小数部分缺少几位,可以在小数末尾添几个“0”;如果小数点向左移动,原来数的整数部分位数不够,可以在整数部分的最高位的前面补“0”。
“练一练”第2题:学生独立完成
再在小组里说说你是怎样想的。
“练一练”第3题:学生独立完成后说说算法和结果。
三、应用小数点位置的移动规律,进行计量单位的换算。
1、ソ萄6
(1)、口答20xx米=()千米、5000米=()千米
在这些简单的问题里体会只要除以1000,把小数点向左移动三位。
(2)、出示例6中的表格,让学生说说从表中能知道什么?
求喷气式飞机每秒飞行多少千米,只要怎么办?
(3)提问:500米=()千米可以怎样想?先在小组里互相说说。
从较大单位的数量改写成较小单位的'数量要乘进率和向右移动小数点,推理出较小单位的数量改写成较大单位的数量应该除以进率和向左移动小数点。
(4)组织交流,并明确:要把500米改写成以“千米”作单位的数,可以用500除以1000;计算500除以1000时,可以直接把500的小数点向左移动三位。
你是怎样把500的小数点向左移动三位的?愿意把你的好办法介绍给大家吗?
2.教学“试一试”
完成后说说你是怎样移动小数点的?
适当指导改写30米的写法
巩固练习
1、学生独立完成练习十二第4、5两题。
指导完成练习十二第6题
学生读题后提问:通过读题,你知道了什么?有谁知道为什么同样的物体在月球上会轻很多呢?适当介绍相关的知识。
3,指导完成练习十二第7题
分析数量关系,明确解决问题的思路。根据“每10吨铁矿石可以炼铁6.05吨”能求出什么问题?
四、全课总结(略)
教学后记
教学中要注意逆向思考,全面地掌握规律。反过来,这个规律还可以怎么说?(引导学生说说如果把一个小数的小数点分别向左移动一位、两位、三位……就相当于这个小数分别除以多少?)
复习内容:
教材练习十相关题目。
复习目标:
1.使学生熟练掌握小数除法的计算方法,提高计算能力。
2.经历用小数除法解决实际问题的过程获得解决实际问题的策略。
3.使学生了解数学源于生活,又应用于生活,体验数学在生活中的价值。
教学重点:
灵活运用小数除法来解决实际问题。
教学难点:
明白解决思路和算理。
教学过程
学生活动
(二次备课)
一、知识梳理
师提问1:你是怎么进行小数除法计算的?
提问2:我们学习了哪些求商的近似值的方法?
提问3:举一个例子,表示循环小数。
学生思考,指名回答,适时指名补充。
小结:除数是小数的除法和除数是整数的除法相似,只需要将除数中的小数转化成整数再除。“四舍五入”“进一法”“去尾法”都是我们学习过的取商的`近似值的方法,在实际生活中,我们要根据实际情况选择合适的方法来解决问题。10÷3=3.3333…,商就是循环小数,不断重复出现的数字就是循环节。
二、针对练习
1.完成教材练习十第2题。
学生独立完成,指名学生汇报计算结果。
2.完成教材练习十第3题。
学生独立计算,指名学生投影展示计算结果,集体交流订正。
3.完成教材练习十第4题。
先由学生独立计算,指名汇报,教师结出规范解答:
9.7+2=11.7(分)
11.7÷1.5=7.8(分)
综合:(9.7+2)÷1.5=7.8(分)
三、巩固练习
1.下面的说法对吗?
(1)16.666是循环小数。()
(2)无限小数比有限小数大。()
(3)循环小数一定是无限小数,所以无限小数也一定是循环小数。()
(4)0.789789…用循环小数的简便记法是0.789。()
独立完成,指名回答并说说判断理由。
2.比一比,哪种小食品最便宜:
巧克力蛋卷:
2千克12.5元
奶油小饼干:
3千克16.9元
五香蚕豆:
0.5千克2.51元
草莓布丁:
4千克20.45元
先独立思考并解答,再指名汇报,并说说自己的想法。
3.完成教材练习十第7题。
(1)学生独立思考,根据题中信息提出相关的数学问题,并解答。
(2)投影展示典型案例,并指名说说自己的想法。
(3)师生共同订正。
四、拓展延伸
1.食堂买来7桶同样的油,如果从每桶油中各取出30.4kg,则剩下的油刚好相当于原来3桶油的质量。原来每桶油重多少千克?
30.4×7÷(7-3)=53.2(kg)
2.近似值是3.30的三位小数中,最大的是几?最小的是几?
最大:3.304
最小:3.295
五、课堂总结
通过今天的练习,你又有哪些新的收获?你还有哪些问题?和大家说一说吧。
六、作业布置
教材练习十第1、5、6题。
学生回忆,在头脑中迅速整理本单元所学的知识,通过思考和表达,加深对知识的印象和理解。
练习中,要把更多的时间交给学生,独立完成和自主交流相结合,不必担心出现问题,出现问题并解决问题是最好的学习过程。
成功之处:学生的练习情况良好,掌握了小数除法的计算方法,计算正确率较高,并能比较灵活地应用小数除法解决实际问题。
不足之处:有个别学生对于概念性的问题理解不深刻。
教学建议:注重个别辅导,争取个别学生在计算方面有所提高。
课题除数是小数的除法(2)例6_苏教版小学数学五年级上册教案目的要求1、让学生经理探索一个数除以小数(被除数的小数位少于除数)计算方法的过程,能理解算理,掌握算法。 2、让学生在学习计算的过程中,提高数学思考的水平和解决实际问题的能力。 3、让学生在参与探索的过程中,增强自主探索,合作交流的意识。 重点难点进一步探索一个数除以小数(被除数的小数位少于除数)计算方法。 理解并掌握被除数的小数位数少于除数小数位数时的处理方法。 教学具实验光盘教学过程教学随笔一、复习导入 1、在括号里填上恰当的数。 0.24÷0.4=( )÷4 5.8÷0.2=( )÷2 0.24÷0.04=( )÷4 58÷0.2=( )÷2 说说每题是怎么想的?“58÷0.2”的58应转化为多少? 2、今天我们继续研究一个数除以小数的除法。(板书课题) 二、自主探索。 1、出示例6。 品种 萝卜 西红柿 单价(元) 0.55 1.2 总价(元) 1.1 3 2、从例题的图和统计表中,你获得了哪些信息? 要求妈妈买萝卜多少千克?你会列式吗?根据什么关系列式? 3、你会用竖式计算吗?在小组中试着算一算,把自己的方法和同学交流一下。
小学数学课时数学计划总第48课时
教学过程教学随笔4、学生尝试计算,展示学生作业。 被除数上的0怎么来的?为什么要补0?除数划去小数点后,乘 几?被除数呢? 指出:当被除数部分的位数比除数少时,要在被除数的末尾用0补足。 被除数补上0以后小数点在哪里?商的小数点应该在哪里? 5、试一试。 买番茄多少千克?你会列式吗? 学生尝试计算,指名板演。 被除数是整数,乘10是多少呢? 原来3的小数点在哪里?现在30的小数点在哪里? 也就是说被除数的小数点也向右移动了几位? 6、在小组里说一说怎样计算一个数除以小数。 归纳 :计算一个数除以小数时,先把除数转化为整数,再看除数的小数点向右移动了几位,被除数的小数点也向右移动几位。如果被除数的小数部分位数不够或者是整数,就用0补足。 7、完成练一练。 学生独立计算,说说每一题各是怎样移动被除数和除数的小数点。 三、巩固练习 1、完成练习十八第1题。 独立完成,说说被除数的小数点应该怎样移动。 2、完成练习十八第2题。 你是怎样验算的? 展示学生作业,集体核对。 3、完成练习十八第3题。 你是怎样列式的? 展示学生作业,集体核对。 被除数的小数点应该向右移动几位?
小学数学课时数学计划总第48课时
教学过程教学随笔4、完成练习十八第4题。 从题中知道了哪些条件?怎样求人工每小时插秧多少公顷? 怎样求插秧机每小时插秧多少公顷? 独立完成计算。 四、课堂小结 今天又有了哪些收获?说说一个数除以小数应该怎样算?板书设计
教学目标
1.使学生理解小数降法的意义,理解小数除以整数的算理,并能够正确计算。
2.提高学生迁移的能力。
3.培养学生合作探究的意识。
教学重点
理解小数除法的意义、掌握小数除以整数的计算方法。
教学难点
理解小数除以整数中“商与被除数小数点对齐”的道理。
教学过程
复习铺垫
(一)填空
1.0.32里面含有32个( )
2.1.2里面含有12个( )
3.0.25里面含有( )个百分之一
4.2.4里面含有( )十分之一
5.8里面含有( )十分之一
(二)列竖式计算2145÷15
二、指导探究
(一)理解小数除法的'意义。
1.(课件演示:小数除法的意义)
板书课题:小数除法的意义
2.练习:(继续演示课件:小数除法的意义)
(二)除数是整数的小数除法。
1.(课件演示:除数是整数的小数除法)
2.练习
68.8÷4 85.44÷16
三、质疑小结
(一)教师提问
1.商的小数点与被除数的小数点为什么要对齐?
2.今天学习的除法与过去学习的除法有什么不同?它与整数除法有什么联系?
将课题补充完整:除数是整数的小数除法
(二)组织学生对今天所学的知识质题答疑。
四、反馈练习
(一)列竖式计算(分组完成)
42.84÷7 67.5÷15 289.8÷18 79.2÷6
(二)列式计算。
1.两个数的积是201.6,一个因数是72,另一个因数是多少?
2.把86.4平均分成24份,每份是多少?
3.64.6是17的多少倍?
(三)应用题
一台拖拉机5小时耕3.55公顷地,平均每小时耕多少公顷?
五、课后作业
计算下面各题
42.21÷18 6.6÷4 37.5÷6 15.36÷12
教学内容:
人教版小学数学教材五年级上册第24~25页例1、例2、例3及做一做,练习六第1~6题。
教学目标:
1.理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。
2.培养学生的分析能力和类推能力。
3.体验所学知识与现实生活的联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。
教学重点:
理解并掌握除数是整数的小数除法的计算方法。
教学难点:
理解商的小数点定位问题。
教学准备:
将本课教学内容制成PPT课件。
教学过程:
一、复习引入
1.用竖式计算:2684、2244、2526、34515。
2.说一说:2244这道题是怎样计算的?(教师适时板书或演示PPT课件。)
3.引入新课:这节课我们就用同学们掌握的整数除法的知识来学习新的知识。
【设计意图】通过复习整数除法,唤醒学生对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。
二、探究新知
(一)教学例1
1.出示例1,引导理解题意。(PPT课件演示。)
(1)题目中告诉了我们什么?(坚持晨练可以锻炼身体,王鹏坚持晨练,他计划4周跑步22.4 km。)
(2)题目中要我们求什么?(按计划他平均每周应跑多少千米?)
2.尝试列式,分析数量关系。
(1)要求他平均每周应跑多少千米,应该怎样列式?(学生口头列式,教师板书或PPT课件演示:22.44。)
(2)引导思考:为什么用22.44?(路程时间=速度)
3.揭示新课,感受学习价值。
(1)请同学们观察这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。)
(2)揭示课题:看来,在实际生活中常常遇到需要用小数除法计算的问题,小数除法还是数学四则运算中的重要组成部分。从今天开始,我们就学习一个新的单元──小数除法(板书单元课题:小数除法),这节课我们先学习除数是整数的小数除法。(板书本节课课题:除数是整数的小数除法。)
4.提出问题,自主思考算法。
(1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?
(2)学生先独立思考,再在小组里交流自己的想法。(教师巡视,了解学生思维活动,参与小组交流,给予适当指导。)
5.教师引导,交流不同算法。
(1)我们已经会计算整数除法,在不改变商的大小的前提下,怎样把小数变成整数呢?谁来说一说你的想法?
(2)指名学生回答。(教师适时板书或PPT课件演示。)
预设一:把被除数扩大到原来的10倍变成224,把除数也扩大到原来的10倍变成40,再来计算。(虽然变成了整数除以整数的形式,但在计算时仍然会遇到小数除法的问题,学生无法完成计算。)
预设二:把22.4 km改写成22400 m,再来计算。
(3)交流对想法二的感受:这样虽然可以算出结果,但是计算时你有什么感觉呢?
6.分步探讨,理解竖式算理。
(1)引导谈话:想法二虽然可以算出结果,但是计算过程比较麻烦;想法一虽然没有算下去,但却提示我们小数除法也可以列竖式计算。下面我们就一起来探讨列竖式计算小数除法的方法。
(2)指导学生列出除法竖式。(教师板书或PPT课件演示。)
(3)引导学生计算,并适时提问:这个余下的2表示什么?(教师用小纸片遮挡住被除数的小数部分,并适时板书,或用PPT课件演示。)
(4)引导学生理解除到被除数十分位的算理,并适时提问:这个24又表示什么呢?(教师揭去遮挡的小纸片,并适时板书,或用PPT课件演示。)
(5)引导学生完成计算,并适时提问:用24个十分之一除以4,每份是多少?怎样在商上面表示6个十分之一?(教师适时板书或PPT课件演示。)
(6)引导学生比较列竖式计算和将22.4 km改写成22 400m计算的结果,提问:这两种算法的结果相同吗?说明了什么?
7.观察对比,归纳计算方法。
(1)引导学生观察小数点的位置,提问:观察竖式中被除数和商的小数点,你发现了什么?( PPT课件演示。)
(2)引导学生对比22.44和2244的竖式计算,提问:你发现它们在竖式计算中哪些地方相同?哪些地方不同?(教师用PPT课件呈现上面两题的竖式。)
(3)引导学生归纳除数是整数的小数除法的计算方法,提问:经过上面的探讨,� )
8.及时巩固,形成计算能力。
(1)完成第24页做一做。(可以让学生任选一题计算。)
(2)展示学生作业,并让学生说一说自己是怎样计算的?
【设计意图】例1的教学是本节课的重点、难点所在,通过例1的教学要使学生理解并掌握除数是整数的小数除法的计算方法,要理解商的小数点如何定位。在本环节的教学中,先让学生结合具体情境,在解决实际问题中引出计算问题,感受学习除数是整数的小数除法的必要性。在解决计算问题时,教师先放手学生自主探索计算方法,再引导学生用已有知识和经验解释竖式计算过程,结合数的含义理解商的小数点要和被除数的小数点对齐的道理,理解除数是整数的小数除法的一般计算方法,为学生下一环节的学习做好充分的铺垫。
(二)教学例2
1.出示例2。(PPT课件演示。)
2.引导学生理解题意,列出算式。(教师板书或PPT课件演示:2816)
3.学生尝试竖式计算,然后小组里相互交流。
(1)你是怎样用竖式计算的?
(2)你在计算过程中遇到什么问题?你是怎样解决的?
4.组织学生交流竖式计算过程,明确算理和算法。(教师适时板书或PPT课件演示。)
(1)你在计算过程中遇到什么问题?你是怎样解决的?
(2)除到被除数的末尾还有余数时,为什么可以添0继续除?
(3)除得的7为什么写在十分位上?
(4)除得的5为什么写在百分位上?
(三)教学例3
1.出示例3。(PPT课件演示。)
2.引导学生理解题意,列出算式。(教师板书或PPT课件演示:5.67)
3.学生尝试竖式计算,然后同桌相互交流。
(1)你是怎样用竖式计算的?
(2)你在计算过程中遇到什么问题?你是怎样解决的?
4.组织学生交流竖式计算过程,明确算理和算法。(教师适时板书或PPT课件演示。)
(1)你在计算过程中遇到什么问题?你是怎样解决的?
(2)为什么商的个位要写0呢?
【设计意图】例2和例3是除数是整数的小数除法中的两种特殊情况,例2是除到被除数的末尾仍有余数,需要添0继续除;例3是被除数比除数小,整数部分不够商1。在例2、例3的教学中,不是直接告诉学生具体的计算方法,而是关注学生的数学思维发展,放手让学生自主尝试竖式计算,在尝试计算中发现它们的特殊之处,在解释每步计算的含义中找到解决问题的方法,在相互交流中强化对算理和算法的深入理解。
(四)小结和验算
1.引导学生进一步归纳除数是整数的小数除法的计算方法以及计算时要注意的问题。( PPT课件演示)
(1)按照整数除法的方法去除;
(2)商的。小数点要和被除数的小数点对齐;
(3)除到被除数的末尾仍有余数,就在末尾添0再继续除;
(4)整数部分不够除,在个位商0,点上小数点继续往下除。
2.引导学生自己尝试验算。
(1)引导:要检验小数除法的计算结果是否正确,可以怎么办?
(2)学生自主验算:请同学们从三道例题中任选一题进行验算。
(3)组织学生交流验算方法。
【设计意图】本环节放手让学生结合自己的计算体会,引导学生在交流和讨论中进一步归纳出除数是整数的小数除法的计算方法以及计算时要注意的问题。这样既有利于学生在理解算理的基础上掌握算法,为后面继续学习小数除法打下扎实的基础,又有利于学生归纳概括能力、数学表达能力的培养和发展。通过引导学生自主验算,既帮助学生加深对乘除法之间关系的理解,又强化学生验算的意识和习惯。
三、巩固练习
(一)基本练习
第25页做一做。
可以让学生从每组中各选择一题进行计算练习。
(二)提高练习
1.练习六第1题。
(1)指导学生按题组计算,在计算中比较每组的两题有什么相同,有什么不同。
(2)引导学生通过对比,理解它们的计算方法相同,不同的是商的小数点的处理。
2.练习六第6题。
(1)学生独立判断。
(2)组织学生交流错在哪里,并改正。
(三)解决问题
练习六第3题。
(1)引导学生理解题意。
(2)引导学生根据一共花的钱分钟数=每分钟花的钱的数量关系列式。
(3)学生列竖式计算,然后交流订正。
四、课堂总结
1.计算除数是整数的小数除法要注意什么?
2.阅读课本第24、25页,关于这节课的学习内容你还有什么疑问?
3.通过这节课的学习,把你感受最深的一点说给大家听一听!
【设计意图】通过回顾和梳理,再次强化重点,并质疑解惑。
五、作业练习
(一)课堂作业
1.练习六第4题(第一行)。
2.练习六第5题。
(二)课外作业
1.练习六第2题。
2.练习六第4题(第二行)。
课题六:
练习课
教学内容:
P26练习
教学目标:
1、会根据需要,求出商的近似值。
2、培养学生数感和灵活应用意识。
教学过程:
一、基础练习
1、取P26,第10题,48÷2。3(保留一位小数)3。81÷7(保留两位小数)审题。求商的近似值的`方法是什么?(一般先除到比需要保留的小数位数多一位,然后按“四舍五入”法取舍。也可观察保留位的余数与除数的大小关系进行判断)。
独立完成,请生板演。
二、巩固练习。
1、独立完成P2610剩余的题
2、独立完成P2611再全班交流,如何比较。
3、P2613学生独立完成全班交流。如何处理结果?
小结:根据需要求商的近似值,求一个数是另一个数的几倍?一般保留整数。
你还能提什么数学问题?教师板书。
三、发展练习
1、P26第12题
请学生说说是如何思考的?肯定多种策略解决问题。
2、教师根据日常教学情况进一步补充针对性的练习
一、填空题
1、除数是整数的小数除法,与整数除法的计算方法相同,商的小数点要和( )的小数点对齐。
2、32.4/18,商的最高位在( )位上,商比1( )。3.24/18,商的最高位在( )位上,商比1( )
3、在计算18.76/0.26时,应将其看作( )/( )
4、在计算46.3/0.52时,要把除数和被除数同时扩大( )倍,变成( )/( )
5、0.028去掉小数点后,这个数扩大了( )倍
6、16.64/0.13的结果是( )
( )*18=11.52 ( )*68=25.16 ( )*15=97.5 ( )*26=96.2
二、操作题(下列除法算式中商最大是( )
3.992/8 39.92/8 3.992/10 39.92/10三、笔算题
2.08/0.26 78.6/0.6 197.6/0.52 0.675/2.7 60.8/0.76
四、判断题
1、商不变的性质不适合小数除法
2、42.8/23大于42.8
3、9.5/0.05=38
4、两个数的商是0.9,被除数不变,除数扩大10倍,商是9
五、“六一”儿童节时,妈妈、奶奶及我游公园,门票共用去7.5元,巳知一张大人票与两张儿童票票价相等,一张儿童票多少元?
六、妈妈与办公室的另外11位同事聚餐,共消费了801.6元,如果采用aa消费制,每个人应付多少元?
七、一个数的2.5倍是22.25,求这个数
复习内容:小数的混合运算和简便算法。(第7、8题,练习九第57题。)
复习要求:
1.使学生进一步掌握小数混合运算的运算顺序,并能正确地进行计算。
2.使学生进一步掌握小数乘、除法中的一些简便算法,并能正确地进行小数乘、除法的简便计算。
复习重点:小数的混合运算和简便计算的正确率及熟练程度。
复习过程:
一、基本训练
练习九第5题:4。5+1。50。75+0。250。25+3。1+1。752。541-0。63
10-1。8-2。20。46280。1254。80。20。50。71。42。430
0。30。152根据学生情况限时做在课本上,集体订正。
二、复习指导
1.第7题。5。519。50。124。078。6+9。12524。842。7-7。3532。342。10。14
(1)看题说一说各题的运算顺序。(2)学生独立计算。(指4名学生板演。)(3)集体订正。
2.P。34页的第7题:先想想下面各题怎样计算简便,再计算。(1)学生看题说一说每题应该怎样算简便?根据是什么?
(2)学生独立简算。(指4名学生板演。)(3)集体订正。
三、课堂练习
1.练习九第6题。学生独立进行简算,教师进行个别辅导。集体订正时要求学生说出每一题是根据什么简算的。
2.练习九第8题:下面是某学校买球的发货票,请你把空格填满。数量单位单价总价
篮球只78。6元
排球3只145。20元
总计金额302。40元
(1)首先让学生讨论怎样才能填出篮球的个数、总价和排球的。单价?并选代表发言。(2)学生填写,教师巡视。
(3)集体订正。
四、攻破难题
1.练习九第9题:小华在计算3。6除以一个数时,由于小数点向右点错了一位,结果得24。这道题的除数是多少?
分析与解:此题先考虑正确商是多少,题中告诉由于小数点向右点错了一位,结果得24,那么正确商应为2。4。再根据除法中各部分之间的关系,用被除数3。6除以商2。4,得到除数是1。5。
2.练习九第9题:小明和爸爸一起去电动游戏场乘飞机。买票时小明付出20元钱,找回了8元。游戏场的学生票价是成人的一半,算一算学生票和成人票的票价各是多少钱?
分析与解:先求出小明和爸爸买票一共花了多少钱,然后考虑,学生票价是成人的一半也就是说一章成人票价等于两张学生的票价。因此,小明和爸爸一共花了3张学生票价的钱。解法为:
(20-8)(2+1)=4(元)学生票42=8(元)成人票五、作业
练习九第6题、思考题。
课题除数是小数的除法(1)例5_苏教版小学数学五年级上册教案目的要求1、使学生理解小数除法的计算方法,懂得商的小数点和被除数的小数点对齐的道理,并能正确进行计算。 2、培养学生的迁移能力,通过启发学生思考,培养学生学习数学的习惯。 重点难点掌握小数除法的计算方法并能正确进行计算 理解除数是小数的除法的算理 教学具实验光盘教学过程教学随笔一、情境引入 1、出示例5情境图。 你了解了什么信息? 根据这些信息你可以想到哪些问题? 妈妈买鸡蛋用去7.98元。买鸡蛋多少千克?应怎样列式? 你是根据什么列式的?(总价÷单价=数量) 7.98÷4.2和我们以前学过的小数除法算式有什么不同? 2、揭示课题。 今天我们共同来研究除数是小数的除法。板书课题:一个数除以小数。 二、教学新课 1、出示例5。 2、小组讨论:你们打算怎样计算7.98÷4.2?比比看,哪个小组的同学可以通过自己的努力,解决这个问题? 3、学生活动,巡视指导。 4、分组汇报。 (1)把7.98元和4.2元都转化成单位是角的数,79.8角÷42角,再计算。 把7.98元和4.2元转化成角,其实就是把被除数和除数都乘了几? (2)把7.98和4.2都乘10,就转化成79.8÷42,除数是整数的小数除法我们已经学过了。 79.8÷42的商与原来7.98÷4.2的商相等吗?根据是什么? 5、小结。 我们想的这两种方法其实只有一个目的,就是把除数4.2转化成整数,因为我们已经学过了除数是整数的小数除法,解决了这个问题,其它问题都可以解决了。 6、出示竖式。 你能看懂这个竖式吗?说说你是怎样理解的? 应该先划去哪个数的小数点?划去4.2的小数点变成42,小数点其实是向什么方向移动了几位? 7.98的小数点为什么也要划去,并且在9后面点上小数点呢? 指出:也就是被除数和除数的小数点同时向右移动一位,商不变。 7、独立完成计算,集体核对。 说说商中小数点的位置是如何确定的?(对齐被除数的小数点,点上小数点) 8、归纳方法。 在小组中说说怎样把除数是小数的除法转化成除数是整数的乘法? (先划去除数的小数点,将除数转化成整数,除数的小数点向右移动了几位,被除数的小数点也向右移动几位,再按照一个数除以整数的方法计算。) 9、验证结果。 怎样验证这个结果是否正确呢?(用1.94.2看看是否等于7.98) 学生验证方法的正确性。 10、完成练一练第1题。 独立填写。 0.3到3,小数点向右移动了几位?被除数呢? 11、完成练一练第2题。 指名板演。 说说是怎样把除数是小数的除法转化成除数是整数的除法的? 三、巩固练习 1、完成练习十七第1题。 2.6÷0.2可以转化成什么? 指出:口算一个数除数小数,也要把它转化成除数是整数的除法。 2、完成练习十七第2题。 计算正确吗?错误的原因是什么? 3、完成练习十七第3题。 独立计算,再比较。 从上往下看,商是怎样变化的?变化的原因是什么?你发现什么了规律? 4、完成练习十七第4、5题。 学生独立完成计算,集体评讲。 5、完成思考题。 (1)如果用电正好是100千瓦时,则应付电费0.52100=52元。 (2)小明家实际付了64.6元,说明用电量超过100千瓦时。 就必须先求出超出的用电量是多少: 64.6-0.52100=12.6元 (3)根据超出用电量的钱数÷单价=超出的千瓦时。 12.6÷0.6=21千瓦时 (4)再求出总千瓦时:21+100=121千瓦时 四、课堂小结:通过本节课的学习,你又收获了哪些新知识?板书设计
教学内容:
教材P33~34例7、例8及练习八第4、5、6、7、9题。
教学目标:
1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。
2 、培养学生发现问题、提出问题、解决问题的能力,提高其观察、分析、比较、判断、抽象的概括能力。
教学重点:
通过笔算发现循环小数的规律,掌握循环小数的意义。教学难点:能正确判断循环节数字,学会用简便记法表示循环小数。
课型:
新授课教学方法:计算、观察、分析、比较、讨论。
教学准备:
多媒体课件。
教学过程
一、创设情境,导入新课》
1、故事引入:今天老师给大家讲一个故事,从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说,从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说……问:学生这个故事能讲完吗?(不能,因为它是依次不断重复出现的)
2、在我们的日常生活中还有哪些现象依次不断重复出现的?这种“依次不断重复”的现象我们可以称它为“循环” 。今天我们就来认识一个新朋友————循环小数。
板书课题。
二、探究新知那么循环小数是怎样产生的呢?让我们共同来探究。
1 、出示教材第33页例7情境图,引导学生观察并说出图意,并找到数学信息,独立列算式。学生列式:400÷75。
让学生用竖式计算这个算式,并说一说在计算过程中你有什么发现。通过计算,学生会发现这个算式的余数重复出现“25”;商的小数部分连续地重复出现“3”。
像这样继续除下去,能除完吗?(可能永远也除不完。)
2 、引导学生思考:为什么商的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?(当余数重复出现时,商就要重复出现。)
3 、出示第33页例8的两道计算题,让学生自主计算,并说出商的特点。在第2小题:78。6÷11计算到商的第三位小数时,让学生先停一停,看一看余数是多少,然后再接着除出两位小数,指导学生和除得的前几步比较,想一想继续除下去,商会是什么?通过观察和比较,引导学生发现:余数重复出现5和6,如果继续除下去商就会重复出现4和5,总也除不尽。
4 、引导学生比较400÷75,28÷18,78。6÷11的商,你有什么发现?引导学生发现:400÷75和28÷18的商,从小数部分的第一位起不断重复出现某个数字,78。6÷11的商,从小数部分的第二位起开始不断地依次重复出现数字4和5。师小结:我们所说的重复也叫做循环,像5。333…1、555…和7。14545…这样小数部分有一个数字或者几个数字依次不断重复出现的小数,就是循环小数。
5 、引导学生自主学习。师引导:循环小数有什么特点?在循环小数里,依次不断重复出现的数字叫什么?怎样表示循环小数呢?请同学们自主学习教材第33—34页的知识。
学生自学后指生回答,学习循环小数的概念。循环小数:一个数的小数部分,从某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。如:5、333…的循环节是3;7 14545…的循环节是45。
三、巩固拓展
1、完成教材第34页“做一做”第1题。学生自主完成,集体订正。
四、课堂小结。
1 、通过本节课的学习,你有哪些收获?(学生反馈)
2 、教师总结:同学们获得了这么多知识,老师真为你们高兴,其实知识永远青睐于爱学习爱动脑的孩子,一分耕耘就有一份收获,好这节课我们就学到这里,下课。
板书设计:循环小数依次不断循环出现400÷75=5.333…。
一、把握知识内在联系,找准新知识的最佳生长点
除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据214.5÷15=14.3,利用商不变的规律直接写出21。45÷1.5、0.145÷0.015的商。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。
二、抓住本质,化繁为简,创造性地处理教材
计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,完全没有必要计算时在小数点的问题上过多纠缠,增加学生的学习难度。教学中,抓住除数是小数的除法的本质,不在竖式计算上设置人为的障碍,降低学生学习的难度,才能使学生学得更轻松。
被除数和除数的小数位数不同,更明显地体现了商不变性质的应用,有助于学生更加深刻地理解算法的本质。计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。
三、发挥学生的主体作用,让学生在自主的学习中获得新知,更新认知结构
在教学中,出示214.5÷15=14.3,要求学生根据商不变的规律说出21.45÷1.5、2.145÷0.15、0.2145÷0.015的商,让学生根据已有的知识经验去尝试,再让学生通过思考、观察、比较2.052÷3.6、2052÷0.36、2.052÷0.036的转化过程来发现除数是小数除法的转化方法。
最后通过计算来总结计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。
四、巧用儿歌教学,帮助学生总结算法,突破难点
在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误,适时引用儿歌可以帮助学生较好的突破这个难点。“外移几,里移几;方向一致要注意;里缺补零要牢记;上下点点要对齐。”