高一新生要作好充分思想准备,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校园环境、适应与初中迥异的纪律制度。记住:是你主动地适应环境,而不是环境适应你。因为你走向社会参加工作也得适应社会。
化学性质
1、单质氧化性:由强到弱。所有的单质中,氟单质的氧化性
2、与H2反应:非金属与H2反应生成气态氢化物(金属不能发生次反应)。气态氢化物是判断非金属性(元素性质)或氧化性(物质的性质)强弱的重要依据:
①非金属性越强,气态氢化物越容易生成
②非金属性越强,气态氢化物越稳定
③非金属性越强,气态氢化物的水溶液酸性越强
3、与水的反应:2F2+2H2O=4HF+O2
Cl2、Br2、I2:X2+H2O=HX+HXO
与碱反应:X2+2OH‐=X‐+XO‐+H2O
4、卤素单质间的置换反应
氧化性强的单质+还原性强的卤离子=氧化性弱的单质+还原性弱的单质
如:Cl2+2NaBr=2NaCl+Br2
氟在溶液中不能发生置换反应。氟没有正价,只有—1价。所有非金属元素都有正价。
5、溴和碘的特性:
①溴:呈液态的非金属,极易挥发,有强烈的刺激性,常在液溴中加入少量水,以减小挥发,保存在密封的玻璃瓶中(水封),不能用橡胶等作瓶塞或盛装,应为溴有腐蚀性。
②碘:易升华,I2使淀粉变蓝。
6、卤化银
AgFAgClAgBrAgI
白色固体,淡黄色固体,黄色固体,既不溶于水,也不溶于酸,均有感光性(遇光分解)+H2O==HF+AgOH↓(白色沉淀,不稳定)
2O+Ag2O↓(黑色沉淀)
乙酸(俗名:醋酸)
1、物理性质:常温下为无色有强烈刺激性气味的液体,易结成冰一样的晶体,所以纯净的乙酸又叫冰醋酸,与水、酒精以任意比互溶
2、结构:CH3COOH(含羧基,可以看作由羰基和羟基组成)
3、乙酸的重要化学性质
(1)乙酸的酸性:弱酸性,但酸性比碳酸强,具有酸的通性
①乙酸能使紫色石蕊试液变红
②乙酸能与碳酸盐反应,生成二氧化碳气体
利用乙酸的酸性,可以用乙酸来除去水垢(主要成分是CaCO3):
2CH3COOH+CaCO3=(CH3COO)2Ca+H2O+CO2↑
乙酸还可以与碳酸钠反应,也能生成二氧化碳气体:
2CH3COOH+Na2CO3=2CH3COONa+H2O+CO2↑
上述两个反应都可以证明乙酸的酸性比碳酸的酸性强。
(2)乙酸的酯化反应
(酸脱羟基,醇脱氢,酯化反应属于取代反应)
硫和氮的氧化物
1.硫单质俗称硫黄,易溶于CS2,所以可用于洗去试管内壁上沾的单质硫。
2.SO2是无色有刺激性气味的气体,易溶于水生成亚硫酸,方程式为SO2+H2OH2SO3,该溶液能使紫色石蕊试液变红色,可使品红溶液褪色,所以亚硫酸溶液有酸性也有漂白性。
3.鉴定SO2气体主要用品红溶液,现象是品红褪色,加热后又恢复红色。
4.SO2和CO2混合气必先通过品红溶液(褪色),再通过酸性KMnO4溶液(紫红色变浅),后再通过澄清石灰水(变浑浊),可同时证明二者都存在。
5.SO2具有氧化性的方程为:2H2S+SO2=3S↓+2H2O,与Cl2、H2O反应失去漂白性的方程为Cl2+SO2+2H2O=2HCl+H2SO4。
6.SO3标况下为无色晶体,遇水放出大量热,生成硫酸。
7.久置_显黄色是因为含有分解生成的NO2;工业浓盐酸显黄色是因为含有Fe3+。保存_方法是在棕色瓶中,放在冷暗处;紫色石蕊溶液滴入浓_现象是先变红后褪色,滴入稀_现象是溶液只变红。
化学结构
1、半径
①周期表中原子半径从左下方到右上方减小(稀有气体除外)。
②离子半径从上到下增大,同周期从左到右金属离子及非金属离子均减小,但非金属离子半径大于金属离子半径。
③电子层结构相同的离子,质子数越大,半径越小。
2、化合价
①一般金属元素无负价,但存在金属形成的阴离子。
②非金属元素除O、F外均有正价。且正价与最低负价绝对值之和为8。
③变价金属一般是铁,变价非金属一般是C、Cl、S、N、O。
④任一物质各元素化合价代数和为零。能根据化合价正确书写化学式(分子式),并能根据化学式判断化合价。
3、分子结构表示方法
①是否是8电子稳定结构,主要看非金属元素形成的共价键数目对不对。卤素单键、氧族双键、氮族叁键、碳族四键。一般硼以前的元素不能形成8电子稳定结构。
②掌握以下分子的空间结构:CO2、H2O、NH3、CH4、C2H4、C2H2、C6H6、P4。
4、键的极性与分子的极性
①掌握化学键、离子键、共价键、极性共价键、非极性共价键、分子间作用力、氢键的概念。
②掌握四种晶体与化学键、范德华力的关系。
③掌握分子极性与共价键的极性关系。
④两个不同原子组成的分子一定是极性分子。
⑤常见的非极性分子:CO2、SO3、PCl3、CH4、CCl4、C2H4、C2H2、C6H6及大多数非金属单质。
离子键与共价键的比较
键型离子键共价键
概念阴阳离子结合成化合物的静电作用叫离子键原子之间通过共用电子对所形成的相互作用叫做共价键
成键方式通过得失电子达到稳定结构通过形成共用电子对达到稳定结构
成键粒子阴、阳离子原子
成键元素活泼金属与活泼非金属元素之间(特殊:NH4Cl、NH4NO3等铵盐只由非金属元素组成,但含有离子键)非金属元素之间
离子化合物:由离子键构成的化合物叫做离子化合物。(一定有离子键,可能有共价键)
共价化合物:原子间通过共用电子对形成分子的化合物叫做共价化合物。(只有共价键)
用电子式表示离子键形成的物质的结构与表示共价键形成的物质的结构的不同点:
(1)电荷:用电子式表示离子键形成的物质的结构需标出阳离子和阴离子的电荷;而表示共价键形成的物质的结构不能标电荷。
(2)[ ](方括号):离子键形成的物质中的阴离子需用方括号括起来,而共价键形成的物质中不能用方括号。
乙烯
1、乙烯的制法:
工业制法:石油的裂解气(乙烯的产量是一个国家石油化工发展水平的标志之一)
2、物理性质:无色、稍有气味的气体,比空气略轻,难溶于水
3、结构:不饱和烃,分子中含碳碳双键,6个原子共平面,键角为120°
4、化学性质:
(1)氧化反应:C2H4+3O2=2CO2+2H2O(火焰明亮并伴有黑烟)
可以使酸性KMnO4溶液褪色,说明乙烯能被KMnO4氧化,化学性质比烷烃活泼。
(2)加成反应:乙烯可以使溴水褪色,利用此反应除乙烯
乙烯还可以和氢气、氯化氢、水等发生加成反应。
CH2=CH2+H2→CH3CH3CH2=CH2+HCl→CH3CH2Cl(一氯乙烷)
CH2=CH2+H2O→CH3CH2OH(乙醇)
溶解性
①常见气体溶解性由大到小:NH3、HCl、SO2、H2S、Cl2、CO2。极易溶于水在空气中易形成白雾的气体,能做喷泉实验的气体:NH3、HF、HCl、HBr、HI;能溶于水的气体:CO2、SO2、Cl2、Br2(g)、H2S、NO2。极易溶于水的气体尾气吸收时要用防倒吸装置。
②溶于水的有机物:低级醇、醛、酸、葡萄糖、果糖、蔗糖、淀粉、氨基酸。苯酚微溶。
③卤素单质在有机溶剂中比水中溶解度大。
④硫与白磷皆易溶于二硫化碳。
⑤苯酚微溶于水(大于65℃易溶),易溶于酒精等有机溶剂。
⑥硫酸盐三种不溶(钙银钡),氯化物一种不溶(银),碳酸盐只溶钾钠铵。
⑦固体溶解度大多数随温度升高而增大,少数受温度影响不大(如NaCl),极少数随温度升高而变小[如Ca(OH)2]。气体溶解度随温度升高而变小,随压强增大而变大。
1、元素周期表的编排原则:
①按照原子序数递增的顺序从左到右排列;
②将电子层数相同的元素排成一个横行——周期;
③把最外层电子数相同的元素按电子层数递增的顺序从上到下排成纵行——族
2、如何精确表示元素在周期表中的位置:
周期序数=电子层数;主族序数=最外层电子数
口诀:三短三长一不全;七主七副零八族
熟记:三个短周期,第一和第七主族和零族的元素符号和名称
3、元素金属性和非金属性判断依据:
①元素金属性强弱的判断依据:
单质跟水或酸起反应置换出氢的难易;
元素价氧化物的水化物——氢氧化物的碱性强弱;置换反应。
②元素非金属性强弱的判断依据:
单质与氢气生成气态氢化物的难易及气态氢化物的稳定性;
价氧化物对应的水化物的酸性强弱;置换反应。
4、核素:具有一定数目的质子和一定数目的中子的一种原子。
①质量数==质子数+中子数:A==Z+N
②同位素:质子数相同而中子数不同的同一元素的不同原子,互称同位素。(同一元素的各种同位素物理性质不同,化学性质相同)
基本营养物质
糖类:是绿色植物光合作用的产物,是动植物所需能量的重要来源。又叫碳水化合物
单糖C6H12O6葡萄糖多羟基醛CH2OH-CHOH-CHOH-CHOH-CHOH-CHO
果糖多羟基XX
双糖C12H22O11蔗糖无醛基水解生成一分子葡萄糖和一分子果糖:
麦芽糖有醛基水解生成两分子葡萄糖
多糖(C6H10O5)n淀粉无醛基n不同不是同分异构遇碘变蓝水解终产物为葡萄糖
纤维素无醛基
油脂:比水轻(密度在之间),不溶于水。是产生能量高的营养物质
植物油C17H33-较多,不饱和液态油脂水解产物为高级脂肪酸和丙三醇(甘油),油脂在碱性条件下的水解反应叫皂化反应
脂肪C17H35、C15H31较多固态
蛋白质是由多种氨基酸脱水缩合而成的天然高分子化合物
蛋白质水解产物是氨基酸,人体必需的氨基酸有8种,非必需的氨基酸有12种
蛋白质的性质
盐析:提纯变性:失去生理活性显色反应:加浓XX显黄色灼烧:呈焦羽毛味
误服重金属盐:服用含丰富蛋白质的新鲜牛奶或豆浆
主要用途:组成细胞的基础物质、人类营养物质、工业上有广泛应用、酶是特殊蛋白质
化学计量在实验中的应用
1、注意“同种微粒公式算”的途径
2、微粒互变按摩换(个数之比等于物质的量之比)
3、CB误差分析法
①俯、仰视必会画图才行(量筒、容量瓶画法不一样)
②偏大偏小看公式:CB=mB/V
4、稀释或浓缩定律
C浓BV浓体=C稀BV稀体
5、CB、ω、S之间换算式:
CB=(1000ρω)/M;ω=S/(100+S)
6、CB配制一般操作
计算、称量、溶解、转移、洗涤、定容、摇匀
实室制取氢氧化铝:Al2(SO4)3+6NH3·H2O=2Al(OH)3↓+3(NH3)2SO4
氢氧化铝与盐酸反应:Al(OH)3+3HCl=AlCl3+3H2O
氢氧化铝与氢氧化钠溶液反应:Al(OH)3+NaOH=NaAlO2+2H2O
氢氧化铝加热分解:2Al(OH)3△Al2O3+3H2O
三氯化铁溶液与铁粉反应:2FeCl3+Fe=3FeCl2
氯化亚铁中通入***:2FeCl2+Cl2=2FeCl3
二氧化硅与***反应:SiO2+4HF=SiF4+2H2O
硅单质与***反应:Si+4HF=SiF4+2H2↑
二氧化硅与氧化钙高温反应:SiO2+CaO高温CaSiO3
二氧化硅与氢氧化钠溶液反应:SiO2+2NaOH=Na2SiO3+H2O
往硅酸钠溶液中通入二氧化碳:Na2SiO3+CO2+H2O=Na2CO3+H2SiO↓
1、原子半径
(1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;
(2)同一族的元素从上到下,随电子层数增多,原子半径增大。
2、元素化合价
(1)除第1周期外,同周期从左到右,元素正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);
(2)同一主族的元素的正价、负价均相同
(3)所有单质都显零价
3、单质的熔点
同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增。
4、元素的金属性与非金属性(及其判断)
(1)同一周期的元素电子层数相同。因此随着核电荷数的增加,原子越容易得电子,从左到右金属性递减,非金属性递增;
(2)同一主族元素外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。
1、金刚石(C)是自然界中最硬的物质,可用于制钻石、刻划玻璃、钻探机的钻头等。
2、石墨(C)是最软的矿物之一,有优良的导电性,润滑性。可用于制铅笔芯、干电池的电极、电车的滑块等
金刚石和石墨的物理性质有很大差异的原因是:碳原子的排列不同。
CO和CO2的化学性质有很大差异的原因是:分子的构成不同。
3、无定形碳:由石墨的微小晶体和少量杂质构成。主要有:焦炭,木炭,活性炭,炭黑等。
活性炭、木炭具有强烈的吸附性,焦炭用于冶铁,炭黑加到橡胶里能够增加轮胎的耐磨性。
4、金刚石和石墨是由碳元素组成的两种不同的单质,它们物理性质不同、化学性质相同。它们的物理性质差别大的原因碳原子的布列不同
5、碳的化学性质跟氢气的性质相似(常温下碳的性质不活泼)
①可燃性:木炭在氧气中燃烧C+O2CO2现象:发出白光,放出热量;碳燃烧不充分(或氧气不充足)2C+O22CO
②还原性:木炭高温下还原氧化铜C+2CuO2Cu+CO2↑现象:黑色物质受热后变为亮红色固体,同时放出可以使石灰水变浑浊的气体
1、中和热概念:在稀溶液中,酸跟碱发生中和反应而生成1molH2O,这时的反应热叫中和热。
2、强酸与强碱的中和反应其实质是H+和OH—反应,其热化学方程式为:H+(aq)+OH—(aq)=H2O(l)ΔH=—57、3kJ/mol
3、弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于57、3kJ/mol。
4、盖斯定律内容:化学反应的。反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成的反应热是相同的。
5、燃烧热概念:25℃,101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。
注意以下几点:
①研究条件:101kPa
②反应程度:完全燃烧,产物是稳定的氧化物。
③燃烧物的物质的量:1mol
④研究内容:放出的热量。(ΔH<0,单位kJ/mol)
乙醇
1、物理性质:无色有特殊香味的液体,密度比水小,与水以任意比互溶
如何检验乙醇中是否含有水:加无水硫酸铜;如何得到无水乙醇:加生石灰,蒸馏
2、结构:CH3CH2OH(含有官能团:羟基)
3、化学性质
(1)乙醇与金属钠的反应:2CH3CH2OH+2Na=2CH3CH2ONa+H2↑(取代反应)
(2)乙醇的氧化反应
①乙醇的燃烧:CH3CH2OH+3O2=2CO2+3H2O
②乙醇的催化氧化反应:2CH3CH2OH+O2=2CH3CHO+2H2O
③乙醇被强氧化剂氧化反应;CH3CH2OH
铁及其化合物性质
1.Fe2+及Fe3+离子的检验:
①Fe2+的检验:(浅绿色溶液)
a)加氢氧化钠溶液,产生白色沉淀,继而变灰绿色,最后变红褐色。
b)加KScom溶液,不显红色,再滴加氯水,溶液显红色。
②Fe3+的检验:(黄色溶液)
a)加氢氧化钠溶液,产生红褐色沉淀。
b)加KScom溶液,溶液显红色。
2.主要反应的化学方程式:
①铁与盐酸的反应:Fe+2HCl=FeCl2+H2↑
②铁与硫酸铜反应(湿法炼铜):Fe+CuSO4=FeSO4+Cu
③在氯化亚铁溶液中滴加氯水:(除去氯化铁中的氯化亚铁杂质)3FeCl2+Cl2=2FeCl3
④氢氧化亚铁在空气中变质:4Fe(OH)2+O2+2H2O=4Fe(OH)3
⑤在氯化铁溶液中加入铁粉:2FeCl3+Fe=3FeCl2
⑥铜与氯化铁反应(用氯化铁腐蚀铜电路板):2FeCl3+Cu=2FeCl2+CuCl2
⑦少量锌与氯化铁反应:Zn+2FeCl3=2FeCl2+ZnCl2
⑧足量锌与氯化铁反应:3Zn+2FeCl3=2Fe+3ZnCl2
1、向氢氧化钠溶液中通入少量CO2:2NaOH+CO2====Na2CO3+H2O
2、在标准状况下2.24LCO2通入1mol/L100mLNaOH溶液中:CO2+NaOHNaHCO3
3、烧碱溶液中通入过量二氧化硫:NaOH+SO2==NaHSO3
4、在澄清石灰水中通入过量二氧化碳:Ca(OH)2+2CO2══Ca(HCO3)2
5、氨水中通入少量二氧化碳:2NH3?H2O+CO2==(NH4)2CO3+H2O
6、用碳酸钠溶液吸收少量二氧化硫:Na2CO3+SO2Na2SO3+CO2↑
7、二氧化碳通入碳酸钠溶液中:Na2CO3+CO2+H2O══2NaHCO3
8、在醋酸铅[Pb(Ac)2]溶液中通入H2S气体:Pb(Ac)2+H2S=PbS↓+2HAc
9、苯酚钠溶液中通入少量二氧化碳:CO2+H2O+C6H5ONa→C6H5OH+NaHCO3
10、氯化铁溶液中通入碘化氢气体:2FeCl3+2HI2FeCl2+I2+2HCl
Na2CO3和NaHCO3
①、与酸的反应
Na2CO3+2HCl=2NaCl+H2O+CO2↑
NaHCO3+HCl=NaCl+H2O+CO2↑(反应速率更快)
②、与碱的反应
Na2CO3+Ca(OH)2=CaCO3↓+2NaOH
2NaHCO3+Ca(OH)2=CaCO3↓+Na2CO3+2H2O
NaHCO3+NaOH=Na2CO3+H2O
③、与盐的反应
Na2CO3+CaCl2=2NaCl+CaCO3↓
Na2CO3+BaCl2=2NaCl+BaCO3↓
④、相互转化
2NaHCO3△Na2CO3+H2O+CO2↑(加热分解)
Na2CO3+H2O+CO2=2NaHCO3(向Na2CO3溶液中通入足量的CO2)
一、化学能转化为电能的方式:
电能(电力)火电(火力发电)化学能→热能→机械能→电能
缺点:环境污染、低效
原电池将化学能直接转化为电能优点:清洁、高效
二、原电池原理
(1)概念:把化学能直接转化为电能的装置叫做原电池。
(2)原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。
(3)构成原电池的条件:
1)有活泼性不同的两个电极;
2)电解质溶液
3)闭合回路
4)自发的氧化还原反应
(4)电极名称及发生的反应:
负极:较活泼的金属作负极,负极发生氧化反应,
电极反应式:较活泼金属-ne-=金属阳离子
负极现象:负极溶解,负极质量减少。
正极:较不活泼的金属或石墨作正极,正极发生还原反应,
电极反应式:溶液中阳离子+ne-=单质
正极的现象:一般有气体放出或正极质量增加。
(5)原电池正负极的判断方法:
①依据原电池两极的材料:
较活泼的金属作负极(K、Ca、Na太活泼,不能作电极);
较不活泼金属或可导电非金属(石墨)、氧化物(MnO2)等作正极。
②根据电流方向或电子流向:(外电路)的'电流由正极流向负极;电子则由负极经外电路流向原电池的正极。
③根据内电路离子的迁移方向:阳离子流向原电池正极,阴离子流向原电池负极。
④根据原电池中的反应类型:
负极:失电子,发生氧化反应,现象通常是电极本身消耗,质量减小。
正极:得电子,发生还原反应,现象是常伴随金属的析出或H2的放出。
(6)原电池电极反应的书写方法:
(i)原电池反应所依托的化学反应原理是氧化还原反应,负极反应是氧化反应,正极反应是还原反应。因此书写电极反应的方法归纳如下:
①写出总反应方程式。
②把总反应根据电子得失情况,分成氧化反应、还原反应。
③氧化反应在负极发生,还原反应在正极发生,反应物和生成物对号入座,注意酸碱介质和水等参与反应。
(ii)原电池的总反应式一般把正极和负极反应式相加而得。
(7)原电池的应用:
①加快化学反应速率,如粗锌制氢气速率比纯锌制氢气快。
②比较金属活动性强弱。
③设计原电池。
④金属的防腐。
生活中两种常见的有机物
乙醇
物理性质:无色、透明,具有特殊香味的液体,密度小于水沸点低于水,易挥发。
良好的有机溶剂,溶解多种有机物和无机物,与水以任意比互溶,醇官能团为羟基-OH
与金属钠的反应2CH3CH2OH+Na→2CH3CHONa+H2
氧化反应
完全氧化CH3CH2OH+3O2→2CO2+3H2O
不完全氧化2CH3CH2OH+O2→2CH3CHO+2H2O(Cu作催化剂)
乙酸CH3COOH官能团:羧基-COOH无水乙酸又称冰乙酸或冰醋酸。
弱酸性,比碳酸强CH3COOH+NaOH→CH3COONa+H2O2CH3COOH+CaCO3→Ca(CH3COO)2+H2O+CO2↑
酯化反应醇与酸作用生成酯和水的反应称为酯化反应。
原理酸脱羟基醇脱氢。
CH3COOH+C2H5OH→CH3COOC2H5+H2O
无机非金属材料的主角——硅
1、构成有机物的不可缺少的元素是碳,硅是构成岩石和矿物的基本元素。
2、SiO2是由Si和O按1:2的比例所组成的立体网状结构的晶体,是光纤的基本原料。
3、凡是立体网状结构的晶体(如金刚石、晶体硅、SiC、SiO2等)都具有熔点高、硬度大的物理性质,且一般溶剂中都不溶解。
4、SiO2和强碱、***都能反应。前者解释碱溶液不能盛在玻璃塞试剂瓶中;后者解释雕刻玻璃的原因。
5、硅酸是用水玻璃加盐酸得到的凝胶,离子方程式为SiO32—+2H+=H2SiO3。凝胶加热后的多孔状物质叫硅胶,能做干燥剂和催化剂载体。
6、正长石KAlSi3O8写成氧化物的形式为K2OAl2O36SiO2
7、晶体硅是良好的半导体材料,还可以制造光电池和芯片。
一、原子半径
同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减;
同一族中,从上到下,随着原子序数的递增,元素原子半径递增。
二、主要化合价
(正化合价和最低负化合价)
同一周期中,从左到右,随着原子序数的递增,元素的正化合价递增(从+1价到+7价),第一周期除外,第二周期的O、F元素除外;
最低负化合价递增(从-4价到-1价)第一周期除外,由于金属元素一般无负化合价,故从ⅣA族开始。
三、元素的金属性和非金属性
同一周期中,从左到右,随着原子序数的递增,元素的金属性递减,非金属性递增;
同一族中,从上到下,随着原子序数的递增,元素的金属性递增,非金属性递减;
四、单质及简单离子的氧化性与还原性
同一周期中,从左到右,随着原子序数的递增,单质的氧化性增强,还原性减弱;所对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。
同一族中,从上到下,随着原子序数的递增,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强,简单阳离子的氧化性减弱。
元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。
五、价氧化物所对应的水化物的酸碱性
同一周期中,元素价氧化物所对应的水化物的酸性增强(碱性减弱);
同一族中,元素价氧化物所对应的水化物的碱性增强(酸性减弱)。
六、单质与氢气化合的难易程度
同一周期中,从左到右,随着原子序数的递增,单质与氢气化合越容易;
同一族中,从上到下,随着原子序数的递增,单质与氢气化合越难。
七、气态氢化物的稳定性
同一周期中,从左到右,随着原子序数的递增,元素气态氢化物的稳定性增强;同一族中,从上到下,随着原子序数的递增,元素气态氢化物的稳定性减弱。此外还有一些对元素金属性、非金属性的判断依据,可
随同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去,因此排在下面的元素一般比上面的元素更具有金属性。元素的价氢氧化物的碱性越强,元素金属性就越强;价氢氧化物的酸性越强,元素非金属性就越强。
元素的气态氢化物越稳定,非金属性越强。同一族的元素性质相近。具有同样价电子构型的原子,理论上得或失电子的趋势是相同的,这就是同一族元素性质相近的原因。以上规律不适用于稀有气体。还有一些根据元素周期律得出的结论:元素的金属性越强,其第一电离能就越小;非金属性越强,其第一电子亲和能就越大。同一周期元素中,轨道越“空”的元素越容易失去电子,轨道越“满”的越容易得电子。周期表左边元素常表现金属性,从上至下依次增大,从左至右一次减小。周期表右边元素常表现非金属性,从上至下依次减小,从左至右一次增大。
一、物理性质:
1、色态:均为银白色,有金属光泽的金属
2、密度:按由上到下的规律排列,其密度遵循由小到大的趋势,但钾钠反常。
3、熔沸点:由上到下依次降低。
二、原子结构
1、原子结构的共同点:最外层电子数目均为1,在化学反应过程中易失去一个电子形成+1价的阳离子。
2、原子结构的递变性:由上到下,电子层数依次增加,原子半径依次增大,对外层电子的吸引力逐渐减弱,电子越易失去,还原性越强。
三、焰色反应
1、焰色反应:用于检验元素(化合物固体、溶液、单质)
2、Na为黄色,K为紫色(透过蓝钴玻璃)
3、钴玻璃的作用:滤去黄色排除Na的干扰
来自石油和煤的两种重要化工原料
乙烯C2H4(含不饱和的C=C双键,能使KMnO4溶液和溴的溶液褪色)
氧化反应2C2H4+3O2→2CO2+2H2O
加成反应CH2=CH2+Br2→CH2Br-CH2Br(先断后接,变内接为外接)
加聚反应nCH2=CH2→[CH2-CH2]n(高分子化合物,难降解,白色污染)
石油化工最重要的基本原料,植物生长调节剂和果实的催熟剂,
乙烯的产量是衡量国家石油化工发展水平的标志
苯是一种无色、有特殊气味的液体,有毒,不溶于水,良好的有机溶剂
苯的结构特点:苯分子中的碳碳键是介于单键和双键之间的一种独特的键
氧化反应2C6H6+15O2→12CO2+6H2O
取代反应溴代反应+Br2→-Br+HBr
硝化反应+HNO3→-NO2+H2O
加成反应+3H2→
1、乙烯燃烧
CH2=CH2+3O2→2CO2+2H2O(条件为点燃)
2、乙烯和溴水
CH2=CH2+Br2→CH2Br-CH2Br
3、乙烯和水
CH2=CH2+H20→CH3CH2OH(条件为催化剂)
4、乙烯和氯化氢
CH2=CH2+HCl→CH3-CH2Cl
5、乙烯和氢气
CH2=CH2+H2→CH3-CH3(条件为催化剂)
6、乙烯聚合
nCH2=CH2→-[-CH2-CH2-]n-(条件为催化剂)
7、氯乙烯聚合
nCH2=CHCl→-[-CH2-CHCl-]n-(条件为催化剂)
8、实验室制乙烯
CH3CH2OH→CH2=CH2↑+H2O(条件为加热,浓H2SO4)
9、乙炔燃烧
C2H2+3O2→2CO2+H2O(条件为点燃)
10、乙炔和溴水
C2H2+2Br2→C2H2Br4
(1)溶质是用物质的量表示而不是质量表示;体积表示溶液的体积,而不表示溶剂的体积,并且体积单位为L。
(2)带结晶水的物质溶于水后,溶质是不含结晶水的化合物,溶剂中的水包括结晶水。
(3)从一定物质的量浓度溶液中取出任意体积的溶液,物质的量浓度不变,但随溶液体积的变化溶质的物质的量不同。
(4)气体溶于一定体积的水中,溶液的体积不等于溶剂的体积而应根据溶液密度和溶液质量求算。
(5)若浓溶液稀释或浓度差别较大的溶液混合,混合后溶液的总体积比原来的体积之和小。