分数的基本性质说课稿(优秀5篇)

作为一名专为他人授业解惑的人民教师,通常会被要求编写说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。如何把说课稿做到重点突出呢?奇文共欣赏,疑义相如析,下面是勤劳的编辑为大伙儿整编的分数的基本性质说课稿(优秀5篇),欢迎参考阅读,希望对大家有所帮助。

分数的基本性质说课稿 篇1

一、说教学内容的创新处理

《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

1、折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。

2、画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

3、想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

4、问--ww"1/2=2/4=/4/8"中,你发现什么?

5、用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

(1)有利于知识的迁移。

让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

(2)能发挥学生学习的主动性。

通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

(3)提高了学生的学习能力。

通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。

二、说教学模式

本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

1、创设情境,复习迁移。

为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)

这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

2、设疑激思,获取新知。

"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

(1)1/2、2/4、4/8这些分数有什么关系?

(学生会说这三个分数的大小相等。)

(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

(如果学生写错或写不出,待得出分数基本性质后再写)

(3)从"1/2=2/4=4/8"中,你发现了什么?

(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

(4)你对上面这句话觉得有什么问题吗?

(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

3、深化概念,及时反馈。

为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

1、下面各式对吗?为什么?(让学生用手势表示对错)

(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5

2、在()里填上合适的数。

()/6=()/36=8/12=2/()=()/24

3、把2/3和10/24化成分线是12而大小不变的分数。

4、把下面大小相等的两个分数用线连接起来。

4/51/64/94/612/16

3/42/320/256/368/18

三、说教学目标

以上各个教学环节的设计体现如下几点教学目标:

1、知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。

2、发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

3、创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

五年级数学《分数基本性质》说课稿 篇2

一、教学内容的说明

《分数的基本性质》一课是青岛版小学数学五年级下册第二单元的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。

教学重点

理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

教学难点

归纳分数基本性质的过程及运用分数的基本性质解决实际问题。

二、教学目标的确定

依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。

过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的应用意识、问题意识及合作意识。

情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物是相互联系、发展变化的辩证唯物主义观点,体会分数的基本性质在社会生活中的作用。

三、教学方法的选择

教法:树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

四、教学媒体的运用

在教学媒体方面,我选择了多种教学媒体综合运用的方式,优化数学的学习过程。正方形纸片,彩笔,直尺等学具准备;通过多媒体教学课件等教具准备,将现代信息技术的运用融合到数学课堂中。

五、教学过程的设计

为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“创设情境,引发思考——复习旧知,引出新知——动手实践,初步感知——引导观察,发现规律——巩固练习,加深理解——课堂小结,任务结尾”六个环节。

(一)创设情境,引发思考

1、教师利用多媒体课件播放动画,故事引入:上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手比一比,从直观上让学生感受到这几个分数大小可能是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢?

2、利用信息技术,创设有趣的故事情境,学生的积极性被调动,纷纷发表自己的不同看法。激发学生学习兴趣,并揭示课题。

(二)复习旧知,引出新知

1、要解决的问题

(1)再现学生的原有知识,建立知识之间的联系,作好迁移的准备。

(2)向学生渗透事物之间相互联系的辨证唯物主义观点,使学生经历猜想的数学活动过程,发展合情推理能力。

2、教学安排

(1)动手操作表示分数

(2)交流分数引导猜想

利用新旧知识的类比进行猜想,鼓励学生根据自己已有的知识经验大胆猜想,建立知识之间的联系,渗透猜想是一种合情的推理。

(三)动手实践,初步感知

1、引导学生利用已有的学习经验找到与1/2大小相等的分数,既能验证1/2=2/4=4/8,又能说明与1/2相等的分数有许多。

2、运用所学知识说明9/12与3/4大小为什么相等?

(1)学生通过自主探索、合作互助的学习方式,自主选择探究的学具和方法,充分尊重学生个人的思维特性。这样设计给学生提供的充足的时间和空间,引起多种知识和方法的整体构建,培养了学生的创新思维。

可能会从如下几方面证明:

①折纸比较的方式。

②画图观察的方式。

③用分数、小数的关系发现。

④运用商不变的规律发现。

⑤其他方法发现。

(2)组织交流证明方法和结果,交流时教师及时引导学生针对学生的不同方法给予不同的评价。

(四)引导观察,发现规律

1、解决的问题

(1)观察发现分数的基本性质。

(2)培养学生观察--探索--抽象--概括的能力。

2、教学安排

(1)提出问题:通过验证这两组分数确实相等,那么,它们的分子、分母有什么变化规律呢?

(2)全班交流:不论学生的观察结果是什么,教师要顺应学生的思维,针对学生的观察方法,进行引导性评价①观察角度的独特性②观察事物的有序性③观察事物的全面性等。(注意观察的顺序从左到右、从右到左)

引导层次一:你发现了1/2和2/4两个数之间的这样的规律,在这个等式中任意两个数都有这样的规律吗?引导学生对1/2和4/8、2/4和4/8每组中两个数之间规律的观察。

引导层次二:在1/2=2/4=4/8中数之间有这样的规律,在9/12=6/8=3/4中呢?

引导层次三:用自己的话把你观察到的规律概括出来。

引导层次四:除了有这样的规律,你还观察到了什么?

(4)引导学生初步总结分数的基本性质并板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

在这一环节,教师引导学生在观察与分析、探索与思考的基础上不断生成新问题,发现并归纳出分数的基本性质。让学生经历了观察发现、抽象概括的整个过程,发挥学生学习的主动性。

让学生回答阿凡提说了什么话?师生共同讨论!

(五)巩固练习,加深理解:

1、解决的问题

(1)完善对分数基本性质的理解。

(2)回忆探究发现规律的全过程,再次体验探究的方法。

(3)对学生自主练习实施分层评价,在练习中培养学生解决问题的能力,发展应用意识,在评价反思中使学生获得成功的体验。

2、教学安排

通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善,同时培养了学生的问题意识。

解决实际问题

基础层次题是分数基本性质的直接运用,提高层次题是培养学生灵活运用知识解决问题。设计分层练习以求达到巩固知识的效果,结合小学生的年龄特点设计,体现情感性、、趣味性、层次性、开放性,力图使不同层次的学生有不同的收获,不同的学生通过测试评价,都能建立起自信。

(六)课堂小结,任务结尾

为了使学生对本节课所学内容有一个整体的感知,我让学生共同回忆本节课研究了哪些问题,通过这些问题的解决你有哪些收获?使学生在讨论的过程中,进一步体会分数的基本性质,感受知识之间的内在联系,同时增强对迁移推理、猜想验证等数学思想的认识。

运用你今天所学的知识,试试能否为三只小狗找到自己的家游戏,通过提问方式找到前两只小狗的家以后紧接着追问剩下的房子是第三只小狗的家吗?

出示思考题

6/9=4/6

(通分、约分的方式都能得到正确的结论,思考的过程对后面通分、约分部分学习起到较好的铺垫作用。)

六、反思课堂教学评价

《新课程标准》指出评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学,应建立评价目标多元化、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感态度,帮助学生认识自我,建立信心。

情感是课堂教学的灵魂,是课堂教学的催化剂,是师生情感的黏合剂,我们要善于用教师的激情激发学生学习的热情,是课堂教学充满生命活力的关键要素。因此,我注重“过程与结果”相结合;注重“动手操作与动脑思考”相结合,“奠定基础、获得方法与情感体验”相结合,努力通过多元多样的评价,激励学生的学习和改进教学,建立学生学习的自信。

以上是我对分数的基本性质这节课的说明,通过设计给我以许多新的思考,很不成熟,但我仍然深切地感受到,在新课程理念的指导下,课堂的教学方式、学习方式、评价方式都在发生着巨大的变化。恳请在座的专家批评指正,谢谢!

分数的基本性质说课稿 篇3

分数的基本性质

1、使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。

2、培养学生观察、分析、思考和抽象、概括的能力。

3、渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育。

教学过程

一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。

二、导入新课例1.用分数表示下面各图中的阴影部分,并比较它们的大小。

1、分别出示每一个圆,让学生说出表示阴影部分的分数。

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2、观察比较阴影部分的大小:

(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

(2)阴影部分的大小相等,可以用等号连接起来。

3、分析、推导出表示阴影部分的分数的大小也相等:

(1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

4、观察、分析相等的分数之间有什么关系?

(1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)

(2)观察 例2.比较 的大小。

1、出示图:我们在三条同样的数轴上分别表示这三个分数。

2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

三、抽象概括出分数的基本性质

1、观察前面两道例题,你们从中发现了什么变化规律? “分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。”

2、为什么要“零除外”?

3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质” (板书:“基本性质”)

4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

四、应用分数基本性质解决实际问题

1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)

(1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。

板书:

教师提问:

(1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

(2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

(3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

(4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

五。课堂练习

1、把下面各分数化成分母是60,而大小不变的分数。

2、把下面的分数化成分子是1,而大小不变的分数。

3、在里填上适当的数。

4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个。

六、课堂总结

今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好。

七、课后作业

1、指出下面每组中的两个分数是相等的还是不相等的。

2、在下面的括号里填上适当的数。

分数的基本性质说课稿 篇4

一、说教材

《分数的基本性质》是九年义务教育六年制小学数学第十册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6 4/8四个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这四个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

1、画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

2、想--1/2、2/4、3/6 、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

3、问—从"1/2=2/4=3/6=4/8"中,你发现了什么?

4、用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

(1)有利于知识的迁移。

让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

(2)能发挥学生学习的主动性。

通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

(3)提高了学生的学习能力。

通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探究问题,培养学生概括问题的能力和解决问题的能力。

二、说教学目标

以上各个教学环节的设计体现如下几点教学目标:

1、知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。

2、发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

3、创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

三、说教法

本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

1、创设情境,复习迁移。

为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:课开始发给每位学生四张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗? 这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

2、设疑激思,获取新知。

"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

(1)1/2、2/4、3/6、 4/8这些分数有什么关系?

(学生会说这四个分数的大小相等。)

(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

(如果学生写错或写不出,待得出分数基本性质后再写)

(3)从"1/2=2/4=3/6=4/8"中,你发现了什么?

(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

(4)你对上面这句话觉得有什么问题吗?

(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

3、深化概念,及时反馈。

为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

1、下面各式对吗?为什么?(让学生用手势表示对错)

(1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/5

2、在()里填上合适的数。

()/6=()/36=8/12=2/()=()/24

3、把2/3和10/24化成分线是12而大小不变的分数。

4、把下面大小相等的两个分数用线连接起来。

4/5 1/6 4/9 4/6 12/16

3/4 2/3 20/25 6/36 8/18

《分数的基本性质》说课稿 篇5

一、说教材分析

《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

二、说教学目标

根据教材分析制定如下的教学目标:

知识与技能:

1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

2、培养学生观察、分析和抽象概括能力。

过程与方法:

1、让学生经历分数基本性质的探究过程。

2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。

情感态度与价值观:

1、体验合作探究的乐趣,培养学生的团结协作精神。

2、渗透“事物间相互联系”的辩证唯物主义观点。

教学重点:理解分数基本性质。

教学难点:归纳分数的基本性质,并运用性质转化分数。

教具教学准备:

多媒体课件,小棒、纸条、圆形纸片

三、说教学策略

为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:

1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。

2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。

3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。

四、说教学流程

结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。

(一)、创设情境,引发猜想

首先我为学生带来一个《猴王分饼》的故事。

猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?

“同学们,你们认为猴王分得公平吗?”引发学生的猜想。

(这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)

(二)自主探索,寻找规律

(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)

1、小组合作 验证猜想

这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。

学生操作验证---集体汇报交流----展示成果

2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?

学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。

3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12

4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64

(三)比较归纳 揭示规律

1、出示思考题

1/4=2/8=3/12

比较每组分数的分子和分母:

从左往右看,是按照什么规律变化的?

从右往左看,又是按照什么规律变化的?

通过观察,你发现了什么?

让学生带着上面的思考题,先独立思考,后小组讨论、交流。

2、集体交流,归纳性质。

3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。

4、现在,大家知道猴王是运用什么性质分饼了吗?

5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。

(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)

(四)自学例2

1、自学例2。

2/3 = 2×()/3×4 =()/12

10/24 = 10 ( )/24 ( ) = ( )/12

2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?

这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。

(五)多层练习 巩固深化

1、填上合适的数,说说你填写的根据

1/3 =()/6 10/15 =()/3 1/4 = 5/()

我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

2、说一说下面各式运用分数的基本性质是否正确

5/24=5×2/24÷2=10/12 ( )

4/9=4÷2/9÷3=2/3 ( )

13/18=13+2/18+2=15/20 ( )

在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。

3、想一想:(选择你喜欢的一道题来做)

与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

(六)本课小结

同学们,通过这节课,你有哪些收获?

学生在交流收获的过程中,培养学生的知识概括能力。

五、说教学评价

1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。

2、多媒体课件的应用,创设生动的教学情境。

3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。

一键复制全文保存为WORD
相关文章