《三角形的面积》教学设计优秀5篇

作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。那么大家知道规范的教学设计是怎么写的吗?读书之法,在循序而渐进,熟读而精思,下面是勤劳的编辑帮家人们整理的《三角形的面积》教学设计优秀5篇,欢迎参考,希望大家能够喜欢。

角形的面积教案 篇1

教学目标:

1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重、难点:重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

教、学具准备:红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

教学设计:

一、创设情境、导入新课

1、提出问题。

师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?

2、揭示课题。

师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

二、探索交流、归纳新知

1、还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

2、出示探究目标和建议

小组合作探究活动,三角形面积的计算公式是怎样推导出来的?

建议:边动手、边想、边说。

(1) 你把三角形转化成了你以前学过的什么图形?

(2)原来的三角形和转化后的图形有什么关系?

(3) 三角形面积的计算公式是什么? 为什么?

3、同学们自选学具,想一想就可以开始了……

4、汇报交流

5、师生共同小结:三角形面积的计算公式,即 三角形的面积=底×高÷2

三、应用公式,解决问题

师:同学们,我们已经推导出了三角形的面积计算公式,现在我们就用三角形的面积计算公式解决一些实际的问题。这是刚才看到的那条红领巾,同学们,你们知道怎样才能求出做一条这样的红领巾要用多少红布吗?

动手量一量它的底和高。算一算一条红领巾到底需要多少红布?

四、联系生活,适当拓展

1.课本86页的练习第1题。课件出示下图:

师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

四、全课总结,反思体验

教师:这节课你们学习了什么?有哪些收获?

《三角形的面积》教学设计 篇2

教材分析:

三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。

学情分析:

在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的`面积这课时,学生已经具备了一定的知识准备和能力基础。

教学目标:

1、经历三角形面积公式的推导过程,理解公式的意义。

2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。

3、会用三角形的面积公式计算三角形的面积。

4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。

教学重点:三角形面积公式的推导。

教学难点:理解三角形是同底(长)等高(宽)长方形面积的一半。

教学过程:

一、导入阶段

通过故事情景产生生活中三角形比较大小的问题:

1、比三角形的大小用数学语言来表达是比什么?

2、采用哪些方法可以比较呢?

小结 :运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?

二、探究阶段

(一)画三角形。

1、每个学生拿出准备好的长方形纸,按要求画三角形。

操作说明:

(1)以长方形纸的一边作为三角形的底边。

(2)以对边的任意一点作为三角形的顶点。

(3)连接顶点与对面的两个角。

(4)你画了一个什么样的三角形?

2、大组交流。

3、猜一猜:要求学生根据自己所画的三角形猜一猜它的面积是整个长方形面积的几分之几?

4、观察已画三角形与长方形之间的特殊关系

5、画出三角形已知底上的一条高,观察已画的三角形的面积占整个长方形面积的几分之几?

(二)实验

1、剪拼三角形。

操作说明:

(1)剪下你所画的三角形。

(2)将剩下部分拼到剪成的三角形中。

思考:剩下部分拼成的三角形是否与剪成的三角形一样大?

(3)填写实验报告

2、学生完成报告后交流

(三)归纳

根据学生的实验得出结论:

一个直角三角形的面积是相应的长方形面积的一半。

一个锐角三角形的面积是相应的长方形面积的一半。

一个钝角三角形的面积是相应的长方形面积的一半。

(1)请学生用一句话来概括。

(2)用数学的方式来表示:三角形面积=相应长方形面积/2

(3)根据长方形的面积公式,推导三角形的面积公式

(4)用字母表示三角形的面积公式。

三、运用阶段:

1、教学例

2、计算导入阶段的3个三角形的面积

(1)分别测出3个三角形的底与高,作好记录。

(2)计算出每个三角形的面积。

(3)交流。

(4)拓展:找出下列图形中面积相等的两个三角形,为什么?

四、总结

这节课我们学习了什么?2、计算三角形面积要知道那些条件?

角形的面积教学设计 篇3

教学目标:

1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算

2、培养学生观察能力、动手操作能力和类推迁移的能力.

3、培养学生勤于思考,积极探索的学习精神.

教学重点:

理解三角形面积计算公式,正确计算三角形的面积.

教学难点:

理解三角形面积公式的推导过程.

教学过程:

一、激发

1、出示平行四边形

提问:

(1)这是什么图形?计算平行四边形的面积我们学过哪些方法?学生总结并回答前面学过的内容。(数表格的方法,割补法,直接测量底和高进行计算等等)

师总结:平行四边形面积=底×高

(2)底是2厘米,高是1.5厘米,求它的面积。

(3)平行四边形面积的计算公式是怎样推导的?

2、出示三角形。三角形按角可以分为哪几种?

3既、然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

教师:今天我们一起研究“三角形的面积”(板书)

二、指导探索

(一)推导三角形面积计算公式。

1、师出示情境图,提出问题:三角形的面积你会求吗?图中的几位同学它们在讨论什么?你有什么好办法吗?(学生讨论,拿出学具分小组讨论)

分析:如果我们不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?

2、三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。(学生自己发现规律,教师出示场景二)

3、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

4、用直角三角形推导

(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。

(2)拼成的这些图形中,哪几个图形的面积我们不会计算?

(3)利用拼成的长方形和平行四边形,怎样求三角形面积?

(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?(引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。)

5、用锐角或者钝角三角形推导。

(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。

(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,(教师边演示边讲述边提问)对照拼成的图形,你发现了什么?(学生自主拼图)引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。

(3)两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。

问题:通过刚才的操作,你又发现了什么?

引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半

6、归纳、总结公式。

(1)通过以上实验,同学们互相讨论一下,你发现了什么规律?

(2)汇报结果。

引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。

③这个平行四边形的底等于三角形的底。

④这个平行四边形的高等于三角形的高。

7、提问并思考,强化推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

三角形面积=底×高÷2

8、教学字母公式。

引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:

(二)、应用

1、教学例题:

红领巾分底是100cm,高33厘米,它的面积是多少平方厘米?

①读题。理解题意。

②学生试做。指名板演。

③订正。提问:计算三角形面积为什么要“除以2”?

2、完成做一做

三、质疑调节

(一)总结这一节课的收获,并提出自己的问题.

(二)教师提问:

(1)要求三角形面积需要知道哪两个已知条件?

(2)求三角形面积为什么要除以2?

四、反馈练习

(一)填空

(1)一个三角形的底是4分米,高是30厘米,面积是()平方分米。

(2)一个三角形的高是7分米,底是8分米,和它等底等高的平行四边形的面积是()平方分米。

(3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是()

(4)一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是()平方分米,三角形的面积是()平方分米。

(5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是()米;如果平行四边形的高是10米,那么三角形的高是()米。

(二)判断

1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。(×)

2、等底等高的两个三角形,面积一定相等。(√)

3、两个三角形一定可以拼成一个平行四边形。(×)

4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

(5)两个面积相等的三角形可以拼成一个平行四边形。(×)

(6)等底等高的两个三角形,面积一定相等。(√)

(7)三角形面积等于平行四边形面积的一半。(×)

(8)三角形的底越长,面积就越大。(×)

(9)三角形的底扩大2倍,高扩大3倍,面积就扩大6倍。(√)

五、作业:

85页做一做和练习十六第1、2、3、4题

板书设计:

三角形面积的计算

因为:平行四边形的面积=底×高,例1……

三角形面积=拼成的平行四边形的一半,100×33÷2=1650(cm)

所以三角形面积=底×高÷2

S=ah÷2

《三角形的面积》教学设计 篇4

教学目标:

1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。

教学重点:

经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。

教学难点:

理解三角形面积公式的推导过程。

教学准备:

多媒体课件、教材第115页的三角形。

探究方案:

一、自主准备

1.说一说:下面每个小方格表示1平方厘米,你知道涂色三角形的面积各是多少平方厘米吗?你是怎么想的?

()()()

2.思考:

(1)三角形的面积与它拼成的平行四边形的面积有什么关系?

(2)有没有直接计算三角形面积的方法呢?

(3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成

二、自主探究

1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。

2.填一填:你剪下的两个完全一样的三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。

3.想一想

(1)拼成平行四边形的两个三角形有什么关系?

(2)拼成的平行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?

(3)根据平行四边形的面积公式,怎样求三角形的面积?

三、自主应用

试一试:完成书上第10页的“试一试”。

四、自主质疑

说一说:

(1)三角形的面积公式是怎么推导的?你还有什么疑问?

(2)你认为本节课应学会什么?

教学过程:

一、明确目标

提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?

二、交流提升

1.出示例4的方格图及其中的平行四边形。

(1)全班交流:每个涂色的三角形的面积各是多少平方厘米?

(2)小组交流:你是怎么得出每个三角形的面积的?说说你的想法。

(3)全班交流:有人用数方格的方法得出三角形面积,也有同学先求出平行四边形的面积,再除以2得出三角形的面积。

三角形的面积和平行四边形的面积会有什么联系呢?

2.交流三角形面积公式的探究情况。

(1)出示例5:展台出示各组的表格填写情况,各组派代表上台展示拼的过程。

小组讨论:你剪下的两个完全一样的三角形的底和高各是多少?面积是多少?拼成的平行四边形的底和高各是多少?面积是多少?

(2)全班交流:你有什么发现?(即例5下面的问题)

(3)梳理、明确

两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。

这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。因为每个三角形的面积等于拼成的平行四边形面积的一半,所以三角形的面积=底×高÷2,用字母表示三角形面积公式:S = a h÷2

3.交流“试一试”

(1)全班交流:你是怎么想的?计算三角形的面积为什么要除以2?

(2)学生订正。

三、巩固提升

1.完成“练一练”的1、2两题。

学生先独立完成,再讨论交流:两个完全一样的三角形拼成一个平行四边形,三角形的面积和平行四边形的面积有什么关系?(让学生弄清谁是谁的2倍,谁是谁的一半。)

2.练习二第6题。

学生独立完成,组织校对。

3.练习二第7题。

(1)多媒体出示第7题的方格图及平行四边形和三角形。

(2)独立思考:你认为图中哪几个三角形的面积是平行四边形面积的一半?为什么?

(3)小组交流:分别是怎么想的。

(4)全班交流、总结

可以通过计算,判断三角形的面积是不是平行四边形面积的一半,也可以把三角形的底和高与平行四边形逐一比较,很快作出判断。

4.练习二第8、9题。

(1)学生独立完成,再交流想法。

(2)学生订正。

四、总结延伸

本节课你有什么收获?还有什么疑问?

板书设计:

三角形的面积计算

两个完全一样的三角形都可以拼成一个平行四边形。

平行四边形的面积=底×高

2倍一半

三角形的面积=底×高÷ 2

《三角形的面积》教学设计 篇5

教学内容

三角形的面积第84-85页

教学目标:

1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

3、培养学生的创新意识和合作精神。

教学重点:

理解三角形面积计算公式,正确计算三角形的面积、

教学难点:

在转化中发现内在联系及推导说理。

学具准备:

每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。

教学过程

复习导入:

1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?

指名说一说,师可再现推导过程。

2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

二、探究三角形的面积公式、

1、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

2、用两个完全一样的直角三角形拼、

(1)教师参与学生拼摆,个别加以指导

(2)演示课件:拼摆图形

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

3、用两个完全一样的锐角三角形拼、

(1)组织学生利用手里的学具试拼、(指名演示)

(2)演示课件:拼摆图形(突出旋转、平移)

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

4、用两个完全一样的钝角三角形来拼、

(1)由学生独立完成、

(2)演示课件:拼摆图形

5、讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

6、引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

③这个平行四边形的底等于三角形的底。(同时板书)

④这个平行四边形的高等于三角形的高。(同时板书)

(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

板书:三角形面积=底×高÷2

(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

7、教学例1

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

1、由学生独立解答、

2、订正答案(教师板书)

三、总结:

(一)总结这一节课的收获,并提出自己的问题、

(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

四、反馈练习

计算下面每个三角形的面积、

1、底是4.2米,高是2米;

2、底是3分米,高是1.3分米;

(三)判断

1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

2、等底等高的两个三角形,面积一定相等。( )

3、两个三角形一定可以拼成一个平行四边形。( )

4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

板书设计

三角形的面积

平行四边形的面积=底×高,

三角形面积=拼成的平行四边形的一半,100×33÷2=1650(cm)

三角形面积=底×高÷2

S=ah÷2

一键复制全文保存为WORD
相关文章