《《用字母表示数》评课(优秀4篇)》由精心整编,希望在【用字母表示数ppt】的写作上带给您相应的帮助与启发。
教学内容:
人教版小学数学教材五年级上册第52~53页例1、例2及相关练习。
教学目标:
1.使学生认识用字母表示数的意义和作用,并能用含有字母的式子表示简单的数量关系。
2.在具体情境中感受用字母表示数的必要性和优越性,渗透符号化思想。
3.在解决问题中体会数学与生活的联系,体会代数符号表示的简洁性,从而进一步感受学习数学的价值。
教学重点:
学会用字母表示数。
教学难点:
理解字母表示数既可表示数量,也可表示数量关系。
教学准备:
课件。
教学过程:
一、谈话导入,揭示课题
同学们,当你的妈妈又在你的耳边唠叨时,你是否有过这样的回答:“妈,你这都说过n遍了!”还有,你跟你的同学炫耀时说过这样的话吗?“这游戏我n年前就已经玩过了!”
那这里的n表示多少呢?
它是一个不能确定的数。今天这节课我们就来学习用字母表示数。(板书课题:用字母表示数)
【设计意图】通过学生自己熟悉的生活经历,使他们感受到字母在我们的生活中是比较常用的,并且它还可以来表示一个不确定的数。同时利用熟悉的生活情境将学生立即引入到课堂中来,激发学生学习的积极性。
二、展示情境,引导探究
(一)出示教材例1的情境图。
讲讲从情境图中你能得到哪些信息?
(二)出示表格。
小红的年龄/岁爸爸的年龄/岁
1
5
10
…………
1.将表格补充完整(列出算式和求出结果)。
2.表格中的省略号表示什么意思?
3.你能通过一个简明的式子,表示出任何一年爸爸的年龄吗(用字母表示小红的年龄)?
4.交流式子,进行比较。
5.想一想,可以是哪些数?可以是200吗?
【设计意图】通过表格内容的完成,使学生能体会到随着小红年龄的变化,爸爸的年龄也在发生变化,而且它们之间始终存在一定的数量关系。让学生通过一个简明的式子表示出任何一年爸爸的年龄,培养了学生抽象概括的能力;通过询问学生"可以是200吗?”,使学生明白,在实际问题中,字母的取值范围是由实际情况来决定的。
(三)代入解题
设问:当小红的年龄时,爸爸的年龄是多少?
【设计意图】通过代入解题的练习,使学生掌握代入解题的方法。同时通过年龄的计算,让学生也能体会到当他(她)为人父母的时候,自己的父母已经是年过半百的老人了,进而渗透尊老爱幼思想教育。
三、自主学习,获取新知
(一)出示教材例2的情境图。
(二)出示问题。
1.将表格补充完整。
在地球上能举起
物体的质量/kg在月球上能举起
物体的质量/kg
1
5
10
…………
2.你能用含有字母的式子表示出人在月球上能举起的质量吗?
3.式子中的字母可以表示哪些数?
(1)出示如下情境图。
从图中你了解到哪些信息?请将你的式子用不同的方法表示出来。
(2)求出例2情境图中小朋友在月球上能举起的质量是多少?
(3)完成例2“做一做”。
【设计意图】利用学生学习例1的经验,并结合例2情境图和设计问题的提示,让学生自主解决例2的问题,掌握新的知识。这样的设计,既充分调动了学生的学习积极性,又培养了学生自主学习和解决问题的能力。
四、应用新知,巩固拓展
(一)看图填一填。
(二)算一算。
小红买了9本笔记本,每本元,共需要多少元?(用含有字母的式子表示)
如果每本笔记本8元,小红付钱后找回了28元,那她总共付了多少元?
如果她付出相同的钱,却只找回了1元,那么笔记本一本多少元呢?
(三)解决问题。
客车的速度是 千米/时,货车的速度是65千米/时,两车同时从甲、乙两地相对开出,3小时后相遇。
(1)用含有字母的式子表示甲、乙两地之间的距离;
(2)当 时,甲、乙两地之间的距离是多少千米?
【设计意图】练习的内容设计密切联系新学知识,同时在编排上体现着由易到难的层次性。练习的材料还紧密联系学生生活实际,对学生而言具有一定的熟悉性和易操作性。
五、课堂小结,拓展延伸
这节课你有什么收获?还有什么疑问吗?
教材分析
《用字母表示数》是北师大版《认识方程》第一课时的教学内容,这是小学生学习代数初步知识的启蒙课,在这之前学生已经认识简单数量关系,字母表示计算公式、运算律,本课也是后续学习简易方程以及中学进一步学习代数知识的前提和基础,因此具有重要地位。
教学目标
1.知识目标:在经历运用字母表示具体数量的活动中,理解和掌握用含有字母的式子来表示数量和数量关系,能用字母表示图形的计算公式;掌握含有字母的式子的一些书写规定。
2、能力目标:经历由具体的数过渡到用字母表示数的探究过程,体会用字母表示数的必要性和优越性,培养符号感,发展抽象概括能力。
3、情感目标:体验数学与生活的密切联系。
教学重难点
学会用含有字母的式子来表示数量和数量关系并理解其意义。
说教学方法
“教无定法”,只有方法得当,才会有效。根据本课教学内容的特点和学生思维活动的特点,我采用了情景教学法和讲练结合的教学方法。
说学生学法
首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立字母就在生活中,就在我们身边,再通过一系列活动,学生合作交流、自主探索进一步了解了字母可以表示数,含有字母的式子既可以表示数量关系,也可以表示数量。再通过各种联系将其转化为解决问题的策略,发掘不同层次学生的不同能力,从而达到培养学生挖掘问题能力、交流能力和解决问题的能力。
教学流程
本课我主要分四个环节来展开教学:创设情境,启迪思维;提供平台,引导探究;学以致用,拓展深化;课堂小结,质疑评价。
第一个环节——创设情境,启迪思维
在这个环节中我让学生先说说生活中用到的字母,让学生感知字母可以简洁方便地表示一些特定的名称和标志,再课件出示扑克牌A,问字母A表示什么呀?(表示一个特定的数),除了表示特定的数还能表示什么?今天这节课,我们就一起来研究用字母表示数。
本环节设计,旨在激发学生学习兴趣,同时自然引入字母表示数,从中体验数学与生活的密切联系,对新知油然而生亲切感和认同感。
第二个环节——提供平台,引导探究
具体分两个层次:
第一个层次——探究用字母表示任意一个数
首先,让学生说说“数青蛙”儿歌后半句:1只青蛙4条腿,2只青蛙8条腿,3只青蛙12条腿……教师提出疑问:“这样继续说下去,说得完吗?”(生答:“因为青蛙有很多很多,永远都说不完。”)
接着问:“怎么用一个式子表示任意只青蛙有条腿?”(学生答有:“?×4、a×4、x×4、a×b、”等等。)
最后转入小结:“这里的a可以表示哪些数?”(生1:“n可以表示1、2、3、4、5……”生2:“n可以表示任何自然数。”)
这一层次,旨在通过贴近生活实际的“数青蛙”儿歌,从“永远都读不完”的体验中感受到用字母表示数是一种需要,认识用字母表示数的意义和作用。学生感觉比较亲切,也降低了学生对字母表示数的难度与知识间的衔接。
第二个层次——探究用字母和含有字母的式子表示数及数量间的关系
其中包含两个知识点:一个知识点是计算年龄——列出含有字母的加、减法式子
首先,让学生根据教师提供的信息,自主发现妈妈的年龄比笑笑大26岁,如果用字母a表示笑笑的年龄,写出妈妈相应的年龄,同时引导学生理解一个人的年龄是有限的,n不能无限大,从而明确:用字母表示数,有时可以表示任意的数,而有时所表示的数却有一定的范围,要具体问题具体分析。
接着让学生变换角度思考:如果用n表示妈妈的年龄,怎样表示笑笑的年龄,同时引导观察发现:笑笑年龄在变,妈妈年龄也在变,但年龄关系始终不变。由此得出:含有字母的式子既可以表示数,又可以表示出数量间的关系。
本知识点教学,以熟悉的年龄问题切入,贴近生活实际,探究用字母和含有字母的式子表示数及数量间的关系,渗透函数思想;同时,懂得用字母表示数时取值要符合生活实际。
另一个知识点是引导学生自学含有字母的乘法式子的简便写法。
先让学生说说如果青蛙的只数用a表示,青蛙的眼睛怎么表示?嘴呢?,再让学生自学课本,最后全班交流含有字母的乘法式子的简便写法。
第三个环节——学以致用,拓展深化
1、探究用字母表示有关图形的计算公式
首先,师问:“正方形、长方形的周长怎样计算?”“正方形、长方形的面积怎样计算?”生回答后,接着课件出示有关正方形周长、面积公式的字母表示要求。然后,引导学生根据这些要求分别用字母表示出这两个公式。通过合作、对比,使学生进一步理解一些公式字母表示方法,加深学生对公式的认识,从而加强学生对新旧知识的联系。
2、再续游戏:你能用一句话结束这首儿歌吗?
1只青蛙1张嘴,2只眼睛4条腿;2只青蛙2张嘴,4只眼睛8条腿;3只青蛙3张嘴,6只眼睛12条腿;……____只青蛙____张嘴,____只眼睛_____条腿。继续从儿歌入手,加深知识的应用,让学生再次在活动中体验成功。
第四个环节——课堂小结,质疑评价
首先学生谈本课学习收获。然后,教师进行恰当评价。
教学内容:
九年制义务教育六年制小学数学第九册P88用字母表示数
教学目标:
1、通过具体情境,学会用字母表示数,用含有字母的式子表示数量关系。理解用字母表示数的意义。
2、通过探索用字母表示数的过程,发展抽象概括能力。
3、培养学生自主学习的探索意识和创新精神及应用知识解决简单的实际问题的能力。
教学重点
学会用字母表示数,用含有字母的式子表示数量关系。
教学难点:
通过探索用字母表示数的过程,发展抽象概括能力。
教学过程:
一、激趣导入
板书:“CCTV”,问:在哪儿见过?表示什么意思?
在生活中,人们常常用字母表示一些特定的含义,你能不能举出几个例子呢?(课件出示例子)
导入:是呀,字母在我们生活中有许多广泛的应用,有的表示事物的标志,有的`是拼音缩写,有的表示单位,有的表示型号,有的表示地区,有的表示人物……同样,在我们的数学中也常常用字母来表示数,这节课我们就来研究怎样用字母和含有字母的式子表示数量。(板书课题:用字母表示数)
二、用含有字母的式子表示数量或数量关系。
师:老师手中有几张扑克牌,9代表9,J代表11,Q代表12,K代表13,。分别代表你们的年龄。
请学生选牌表示学生的年龄
师:想知道老师的年龄吗?请学生猜测
师:先不告诉大家,告诉一个信息:老师比小一大20岁。不急,先跟着老师穿越时空,回到过去,回到了小一1岁的时候,那时候老师几岁呢?
生:14,1+13=14
师:当小一2岁的时候,老师几岁,2+13=15 (板书)谁能接着往下说,当小一几岁,老师几岁?
生讲
师:自己都觉得烦了是吗?可是求老师岁数的问题写完了吗?加省略号表示。 这里有一个数字始终没变,是哪个呢?
生:年龄差
师:数学有时就是研究变与不变的规律,里每一个式子都只能表示一个年龄,能用一个式子表示所有的年龄吗?
小组讨论
师:说说你怎样表示的?
生:用n表示小一的年龄,老师的年龄就是n+13
师:觉得他这样表示好吗,把掌声送给他,她这样表示好在哪里?
生:比较简便
师:一个含有字母的式子就能表示所有情况。还有其他的表示方法吗?
用简明的式子解决了复杂的问题,这就是我们今天要学习的内容:用含有字母的式子表示数量关系。N+13除了表示老师的年龄,还能反映出什么信息?
生:老师比小一大13岁,小一比老师小13岁。
师:这张牌是谁的年龄?这张牌是10.就是当n=10时,n+13=?当n变成具体数量的时候,n+13也变成了具体数量。穿越时空,小一18岁的时候,老师几岁?搜搜继续穿越,小一60岁的时候,老师几岁了?当n=1000的时候,老师几岁?——1013岁,同学们都笑了。老师给大家看个信息,你们觉得n是怎样的。
生答
师:人的生命是有限的,用字母表示数的范围也是有限的。若用b表示老师的年龄,怎样表示小一的年龄呢?
生:b-13,用你自己喜欢的字母表示自己的年龄,用含有字母的式子表示爸爸的年龄。爸爸比我大( )岁,用( )表示我的年龄,用( )表示爸爸的年龄。
生回答
师:老师有个梦想,驾着飞船遨游太空,月球上有什么秘密呢?想知道吗?
地球引力是月球引力的6倍,因此在月球上人能举起的质量是地球上的6倍。
如果我们都上了月球,你能举起多少千克?
生答 地球上14千克,月球上举起84千克。怎样计算的?14*6
问学生的体重具象化 能举起大约三个学生的质量。
师:如果每个同学举起的质量不一样,根据表格中显示的数量关系,你能用含有字母的式子表示所有情况。
生答
师:能说说字母表示的是什么?在含有字母的式子里,字母中间的乘号可以记作“ · ”,也可以省略不写。省略乘号时,一般把数字写在字母前面。所以我们可以简写为6a
一个含有字母的式子表示了任何人在月球上举起的质量,能用其他字母表示吗?字母表示数在实际情况下是有范围的,给大家看一个信息,这里的n可以表示哪些数?人能举起的质量是有限的,字母的范围是有限的,比如这个同学在地球上只能举起15千克,当n=15kg,在月球上能举起多少?
师:看书有什么疑问?老师考考大家,如果人能在月球上举起物体k千克,地球上能举起多少呢?——k/6
师:现在来轻松一下。拍拍手唱唱歌,一只青蛙1张嘴,2只眼睛4条腿……
没写出来你也能读下去啊,是不是发现了什么规律?
生:眼睛的只数是青蛙只数的2倍,腿的条数是青蛙只数的四倍。
师:你能用含有字母的式子表示这首儿歌吗?
这就充分体现了用字母含有的式子的优点。
师:看来我们都掌握了,现在来看看小红的数学日记。
下面我们就用刚刚学的本领,一起帮小红陪妈妈到商场去买衣服吧!
1、数学日记。
陪妈妈买衣服
周末上午,小红与妈妈乘33路公交车到一百商场买衣服。上车时小红数了一下,共有25人,到了海滨公园站下去x人,又上来y人,现在车上有( )人。到了一百商场,小红看到商场门前停放着2排自行车,每排大约a辆,现在商场门前约停放着( )自行车。在服装柜台前妈妈看中了一件c元的上衣,打折后比原价少了12元,最后妈妈只花了( )元就买到了一件非常满意的衣服,她开心得笑了。
2、陪妈妈买好衣服,我们陪小红去看体育用品。
如果我们用A表示排球的单价,用下面的式子分别表示篮球、足球、乒乓球的单价,你能看得出排球单价与这几种球的单价之间有什么关系吗?
出示:A-7.5 1.5×A A÷20
当A=40时,篮球、足球、乒乓球的单价分别是多少元?
3、逛完商场,我们一起来到联通公司:
联通网手机每月缴交费用规定如下:每月固定月租费10.00元,每分钟通话费0.20元。小红妈妈这个月手机通话时间为a分钟,他这个月应缴交手机费多少元?
一、教学目标:
1、经历探索规律并用代数式表示规律的过程。能用字母和代数式表示规律。
2、体会字母表示数的意义,形成初步的符号感。
3、通过学生具体操作、实践、归纳,以促进学生的自我创造,培养学生的动手,动脑能力,提高学生观察图形和分析,归纳能力,掌握由特殊到一般的认识规律。
4、创设问题情境,充分让学生自主地进行操作,思考归纳和互相讨论,使规律、符号感得到成为学生研究的必然结果,从中使学生体会合作与成功的快乐,由此激发其更加积极主动的学习和勇气。
二、教学重、难点
教学重点:
1、通过操作思考,由特殊归纳一般规律,并用字母表示规律。
2、理解字母表示数的意义,建立符号感。
教学难点:多角度认识搭建的正方形图形。
三、教学准备:
1、投影仪、投影片。
2、每个学生准备一盒火柴棒。
四、教学过程:
(一)创设问题情境。
师:同学们,我们都知道8年奥运会将在我国举行,为了迎接8年奥运会,我设想(用投影显示)以这种形式从左往右搭8个正方形,谁能在10秒钟内告诉老师需要多少根火柴棒?(学生思考一会,不能迅速作答)这时教师趁机告诉学生数学的一个基本:由简单入手,深入浅出解决问题!
在这一教学环节中,通过创设问题情境,激发学生的求知欲,培养学生积极主动地学习和探索勇气。
(二)探索规律并用字母表示。
先让学生用火柴棒搭一搭,数一数,并填写下表:(预先给学生)
搭正方形个数 1、2、3、10、100。
用火柴棒根数
在这个过程中,学生积极动手,教师巡视,发现学生都能很快写出前四格的正确答案,但有不少学生最后一格空着,不知如何是好,这时教师没有立即讲解。
问:表格中哪几格可以直接通过搭拼后数出来?
生:前四格。
教师趁机问:搭100个正方形的火柴棒根数不能数出来,那该怎么办呢?我放手让学生以小组为单位讨论后再回答。教室里一下子热闹起来,同学们展开了热烈讨论,并抢着说出了答案,教师要求说出理由。
生1:因为第一个正方形用4根,每增加一个正方形增加3根,所以搭100个正方形所需火柴棒根数为4+3×99=301(根)。
生2:先搭一根,然后每一个正方形需三根,按这样搭100个正方形就需要火柴棒1+3×100=301(根)
生3:把每一个正方形都看成用4根搭成的,然后再减去多算的99根,共用了:4×100-99=301(根)
生4:上面一排和下面一排各用了100根火柴,中间竖直方向用了101根,共用了火柴棒100+100+101=301(根)。
(对于每一种算法教师不作评判,都由学生评判)
正当同学们为自己努力所获得的成果庆幸时,我又提出:(投影显示)如果用X表示所搭正方形的个数,那么搭X个这样的正方形需要多少根火柴棒?与同伴进行交流。
(学生积极讨论,气氛活跃,不到两分钟,同学们陆续举手)其中一组:根据搭100个正方形所需火柴棒的计算方法,得到了四个答案:
①[4+3(X-1)]根 ②(3X+1)根
③[4X-(X-1)]根 ④[X+X+(X+1)]根
教师加以肯定后提出,有没有向第五种挑战的呢?(同学们思考片刻)
生6:搭第1根、第3根、第5根……分别看作每个正方形需4根火柴棒,那么第2个、第4个、第6个……分别需要2根,这样共需火柴棒(4× +2× +1)根。
师:请选择其中一种方法算一算搭8个正方形需要多少根火柴棒?
生:6025根。
师:你们是怎样算的呢?请一个同学说一说。
生:把8代替式子(3X+1)中的X,得3×8+1=6025。
师:很对。大家的答案一致,说明刚才从不同的思考角度得到的不同形式的答案都是正确的,以后学了“去括号,合并同类项”之后就知道结果是一样的。(鼓励的口气)你们以后要多注意对一个问题从多角度,多层次去思考,对一个事物能采用多种方法去表达,对一道题能想出不同的解法,善于归纳,你们在知识上就能成为最富有的人。
(点评:通过学生动手操作,自主探索,合作交流等学习方式,使学生自己完成由特例归纳一般规律,并用字母表示一般规律的过程,培养学生分析,归纳能力,初步形成符号感,并体会到探索一般规律的必要性。)
(三)进一步探讨字母表示数
师:在4+3(X+1)、X+X+(X+1)、1+3X,4X-(X-1)中的X表示什么?
学生:(畅所欲言)“正方形的个数”,“整数”、“正整数”
师:撇开搭火柴棒问题呢?
学生:(抢着说)“有X个商场”、“长方形的长是X厘米”、“班级中有X个学生”、“气温是X℃”……
师:同学们已举出了很多例子,说明字母能代表任意数,长度,个数等。写出你所知道的用字母表示的图形的周长或面积公式、及字母表示的运算律(投影显示)。并指出字母所表示的数(各写两个)。
(学生独立完成后指名板演,其余在组内交流进行评议)
(点评:通过谈一谈,写一写,对字母的意义有一个明确的认识过程,形成符号感)
(四)归纳:
师:(投影显示)回顾本节课的内容,思考下列问题并说一说,
1、 你是怎样得到表示规律的代数式的?
2、 字母能表示什么?
3、 通过今天的学习,你对规律、字母表示数有何看法?(点评:通过反思,使学生进一步掌握出特殊到一般的认识规律,理解字母表示数的重要意义,加深符号感。)
(五)巩固练习:
书:P142
(六)作业
(七)课后反思:
本堂课始终以学生为中心,教师作为教学活动的组织者,引导者,合作者,为了转变过去接受学习,死记硬背,机械模仿的学习方法,体现“动手实践,自主探索、合作交流是学生学习数学的重要方式”这一,教学中为学生创造大量的操作、思考和交流的机会,关注学生思考问题的过程,鼓励学生在探索规律的过程中从多个角度进行考虑,注重学生间相互方式的运用,培养学生主动探索,敢于实践,善于发现的科学以及合作交流的能力和创新意识。