新高一数学知识点总结(优秀23篇)

上学期间,是不是听到知识点,就立刻清醒了?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。相信很多人都在为知识点发愁,

高一数学重点知识点总结梳理 1

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

高一数学知识点总结 2

高一数学必修一

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

⑤一般式:(A,B不全为0)

注意:○1各式的适用范围

○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(4)直线系方程:即具有某一共同性质的直线

高一数学总结 3

学习数学,掌握基础很重要,那么如何打好基本功呢?对此我有几条几解,同学们可以参考参考。

第一,做数学要运用到很多公式,很多同学都说公式记不熟,因此我经常看到有的同学拿着一本公式册子在那里猛地背,这种方法我不太赞同,虽然能背熟公式,但一到做题和实际运用时,就会发现脑子有点乱,不知道运用哪条公式,而且背熟的公式没过几天可能会忘记,就因为这是硬性记性,不可靠。我认为记公式呢,要知道这条公式的原理,最好能把它推一下,做题时即使记不住了,也可举个例子来推一下,像三角函数公式有很多,

第二,就是计算能力,很多同学题目会做,但却因计错数而失分,想要改变这种状况,就必须培养计算能力和养成良好的习惯,对于计算能力的培养,没有什么秘诀,只能靠多做,还有计算不要把草稿本画得太花,计算过程要有头有尾,才不致于计算时不知西东。

以上的方法,同学们如果觉得有用,可以试一下,方法是人想出来的,如果同学们有更好的建议可以提出来,与大家一起分享一下。

高一数学知识点总结 4

第一章

〖1.1〗集合

【1.1.1】集合的含义与表示

(1)集合的概念

集合中的元素具有确定性、互异性和无序性。

(2)常用数集及其记法N表示自然数集,N_或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集。

(3)集合与元素间的关系

(4)集合的表示法

①自然语言法:用文字叙述的形式来描述集合。

②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。

③描述法:{x|x具有的性质},其中x为集合的代表元素。

④图示法:用数轴或韦恩图来表示集合。

(5)集合的分类

①含有有限个元素的集合叫做有限集。②含有无限个元素的集合叫做无限集。③不含有任何元素的集合叫做空集。

【1.1.2】集合间的基本关系

(6)子集、真子集、集合相等

【1.1.3】集合的基本运算

(8)交集、并集、补集

【补充知识】含绝对值的不等式与一元二次不等式的解法

(1)含绝对值的不等式的解法

(2)一元二次不等式的解法

〖1.2〗函数及其表示

【1.2.1】函数的概念

(1)函数的概念

①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.

②函数的三要素:定义域、值域和对应法则。

③只有定义域相同,且对应法则也相同的两个函数才是同一函数。

(2)区间的概念及表示法

{{7}}$

(3)求函数的定义域时,一般遵循以下原则:

①f(x)是整式时,定义域是全体实数。

②f(x)是分式函数时,定义域是使分母不为零的一切实数。

③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合

④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

⑥零(负)指数幂的底数不能为零。

⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集。

⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出。

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论。

⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义。

(4)求函数的值域或最值

求函数最值的常用方法和求函数值域的方法基本上是相同的。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同。求函数值域与最值的常用方法:

①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值。

②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值。

④不等式法:利用基本不等式确定函数的值域或最值。

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题。

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值。

⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值。

⑧函数的单调性法。

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种。

解析法:就是用数学表达式表示两个变量之间的对应关系。列表法:就是列出表格来表示两个变量之间的对应关系。图象法:就是用图象表示两个变量之间的对应关系。

(6)映射的概念

④不等式法:利用基本不等式确定函数的值域或最值。

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题。

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值。

⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值。

⑧函数的单调性法。

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种。

解析法:就是用数学表达式表示两个变量之间的对应关系。列表法:就是列出表格来表示两个变量之间的对应关系。图象法:就是用图象表示两个变量之间的对应关系。

(6)映射的概念

${{9}}$

〖1.3〗函数的基本性质

【1.3.1】单调性与最大(小)值

(1)函数的单调性

①定义及判定方法

②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数。

{{13}}

【1.3.2】奇偶性

(4)函数的奇偶性

①定义及判定方法

②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.

③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反。

④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数。

〖补充知识〗函数的图象

(1)作图

利用描点法作图:

①确定函数的定义域;

②化解函数解析式;

③讨论函数的性质(奇偶性、单调性);

④画出函数的图象。

利用基本函数图象的变换作图:

要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象。

①平移变换

②伸缩变换

③对称变换

(2)识图

对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系。

(3)用图

函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具。要重视数形结合解题的思想方法。

第二章 基本初等函数(Ⅰ)

〖2.1〗指数函数

【2.1.1】指数与指数幂的运算

(1)根式的概念

{{19}}

{{21}}$

【2.1.2】指数函数及其性质

(4)指数函数

〖2.2〗对数函数

【2.2.1】对数与对数运算

(1)对数的定义

{{24}}

【2.2.2】对数函数及其性质

(5)对数函数

{{27}}

〖2.3〗幂函数

(1)幂函数的定义

一般地,函数y=xa叫做幂函数,其

(2)幂函数的图象

(3)幂函数的性质

①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象。幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象

②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)

③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数。如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴。

{{30}}$

〖补充知识〗二次函数

(1)二次函数解析式的三种形式

(2)求二次函数解析式的方法

①已知三个点坐标时,宜用一般式。

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式。

③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便。

(3)二次函数图象的性质

{{33}}

一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布。

{{36}}

{{38}}

⑥k1<x1<k2≤p1<x2<p2 p="" 此结论可直接由⑤推出。

{{41}}

第三章 函数的应用

方程的根与函数的零点

高一数学总结 5

转眼一学期又结束了,本学期我担任高一(1)、(2)班的数学课教师,这两个班属于高一年级的两个重点班。上学期期末考试两个班的数学成绩取得第一第二的好成绩。这学期来,我努力改善自己的教育教学思想和方法,切实抓好教育教学工作,认真引导学生理解和巩固基础知识和基本技能。无论从学习态度还是学习方法上,都取得了明显的进步,现将这学期的教育教学状况总结如下:

一、在教学方面:

(1)我让学生首先做好课前预习,在课前预习中培养学生的自学潜力,课前预习是教学中的一个重要的环节,从教学实践来看,学生在课前做不做预习,学习的效果和课堂的气氛都不一样。为了抓好这一环节,我常要求学生在预习中做好以下几点,上课前做好练习册《金版教程》的基础自学。促使他们多做一些最基本的简单题,去动脑,逐步培养他们的预习潜力。比如本小节主要讲了哪些基本概念,有哪些注意点本小节还有哪些定理、性质及公式,它们是如何得到的,你看过之后能否复述一遍对照课本上的例题,你能否回答课本中的练习,透过预习,你有哪些疑问,把它写在“数学摘抄本”上,而且从来没有要求学生就应记什么不就应记什么,而是让学生自己评价什么有用,什么没用(对于个体而言)少数学生的问题具有必须的代表性,也有必须的灵活性。这些要求刚开始实施时,还有必须困难,有些学生还不够自觉,透过一段时间的实践工作,取得了比较明显的进步。

(2)其次,在课堂教学中培养学生的自学潜力,我的一个主要的教学特征就是:给学生足够的时间,这时间包括学生的思考时间、演算时间、讨论时间和深入探究问题的时间,在我的课堂上能够看到更多的是学生正在用心的思考、热烈的讨论、亲自动脑,亲自动手,不等不靠,不会将问题结果完全寄托于老师的传授,而是在用心主动的探索。当然数学教学过程作为师生双边活动过程,学生的探索要依靠教师的启发和引导。在教学过程中,我也从来没有放下对于学生的指导,尤其在讲授新课时,我将教材组成必须的尝试层次,创造探索活动的环境和条件。让学生透过观察归纳,从特殊去探索一般,透过类比、联想,从旧知去探索新知,收到了较好的效果。

(3)再次是课后作业合理布置,透过布置作业来培养学生自学潜力,所以要合理应用练习册,这学期我们使用的是《金版教程》,这本练习册的选题很经典,结构也很合理,先有课前自主学习,这让学生能够了解本节课的主要资料,课前自主学习是本节课的主要知识点和基本公式。自我小测一般都是选取题和填空题,也是一些最基本的题型,让学生掌握了最基本的知识点,其次是三个考点,由易到难,让学生对知识有一个融会贯通和提升的作用。而我会提前先把题做一遍,找出适合自己所带学生的练习题,布置成作业和练习。

(4)多媒体课件的正确使用,无论是必修课还是选修课,都有课件,而且课件容量大,习题由易到难,我觉得有些知识并不适合自己所带学生,而且会占用超多的时间和分散学生的注意力,所以每节课我不会以课件为主导,不让课件“牵住”我和学生的鼻子走,它只是教学的一个辅助工具,当然,不可否认,在必修3和必修4的教学中,尤其是三角函数图像的伸缩变换,平移变化等,课件更生动和形象也更直观。

二、政治思想方面:

这学期,本人认真学习新课改的教育理论,认真钻研新课标,不断学习和探索适合自己所教学生的教学方法,本着:“以学生为主体”的原则,重视学生学习方法的引导,帮忙学生构成比较完整的知识结构,同时本人用心参加校本培训,并做了超多的探索与反思。并用心参与听课、评课,虚心向同行学习教学方法,博采众长,不断的提高自己的理论水平和教育教学水平,以适应教育的发展,时刻以做为一个优秀数学教师就应具备的条件来要求自己,努力做到更好,本学期我能遵守学校的各项规章制度,用心参加学校组织的各项活动,如听评课等,踏踏实实,认认真真地搞好日常教学工作环节,精心备课,认真上课,仔细批阅作业。抽时间也会做一些高考题,以便更好地理解高考动向。

三、存在的不足

这学期我们班的有些学生成绩滞后,我对此分析出以下几点原因:

(1)由于学生底子薄,基础差,学生之间差距大,而我有时选的例题难度系数比较大,有些同学理解比较困难,并且有时难度大了,反而忽略了他们对基础知识的掌握。

(2)有些学生对教师的依靠性还是很大,动手潜力差,遇到问题不思考,不去分析,只会抄袭。

(3)有些学生自信心不足,把自己定位在了最差学生的位置上,对这些学生我会从最基础的知识抓起,培养他们学习的用心性,以提高成绩。

这就是我对这学期的教育教学工作总结,在以后的教学中,我会不断地总结,不断地改善自己,加强自己的专业知识,扩充自己的知识面,完善知识结构,使自己能成为一名优秀的教师。

高一数学总结 6

光阴荏苒,一学期就过去了,回首本学期,既忙碌又充实,在虚心学习的态度我忘我的认真工作下,我顺利的完成了本学期的工作,收获颇多,本学期主要担任的是高一(1)、(6)的数学教学,其中有许多值得总结和反思的地方。

一、教学方面

1、合理使用教科书,提高课堂效益。对教材内容,教学时需要作适当处理,适当补充或降低难度是备课必须处理的。灵活使用教材,才能在教学中少走弯路,提高教学质量。对教材中存在的一些问题,我经常去听一些老教师的课,并且对有疑惑的教学点都会很主动地请教。每次我都认真解读教参中的目标、重难点和教学方法等。对课标要求的重点内容有时我还适当地降低难度,对教材中不符合学生实际的题目也作适当的调整。对于教科书后面的习题中包含的很多数学性质和运算技巧我经常先布置同学们自行解决,到习题课才进行讲解,让同学们加深印象。

2、改进学生的学习方式,注意问题的提出、探究和解决。教会学生发现问题和提出问题的方法。以问题引导学生去发现、探究、归纳、总结。我还经常性地对一些知识为学生引入生活中生动的比喻或者顺口溜来引导他们更加主动、有兴趣、快乐的学。

3、分层次教学。我所教的两个班,层次有些差别,高一(1)班整体的数学基础较好,(6)班的基础较差,所以我就有所区别地进行教学。其实总体来讲高一年级的学生初中的基础都不牢固,高中的知识对他们来说就更增加了难度,2个班都存在两极分化的现象,有几位基础较扎实的,也有基本没有基础的,因此,不管是备课还是备练习我都花了一些心思,注重分层次教学,注意引导他们从基础做起,同时又不乏让他们可以开拓思维,积极动脑让人人有的学,让人人学有获。

4、课后辅导。我经常鼓励数学基础较差或者希望数学更上一层楼的同学在第九节课时留下来,我进行辅导,整个学期下来有些学生的数学基础比以前好了很多,努力得到了收获,学生和我后快乐。

二、存在困惑

1.书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生的学习负担,而且学生完成情况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。

2.在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生听得似懂非懂,造成差生越来越多。而且知识内容需要补充的内容有:乘法公式;因式分解的十字相乘法;一元二次方程及根与系数的关系;根式的运算;解不等式等知识。

3.虽然经常要求学生课后要去完成教辅上的精选的题目,但是,大部分的同学还是没办法完成。学生的课业负担太重,有的学生则是学习意识淡薄。

三、今后要注意的几点

1.要处理好课时紧张与教学内容多的矛盾,加强对教材的研究;

2.注意对教辅材料题目的精选;

3.要加强对数学后进生的思想教育。

总之,我是一个没有教学经验的新手,在以后的教学中我会更加积极地在老教师身上吸取经验,把握好每一次课,不断努力,争取更好的成绩。

高一数学基础知识点总结 7

1、概念:

(1)回归直线方程

(2)回归系数

2.最小二乘法

3.直线回归方程的应用

(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

4.应用直线回归的注意事项

(1)做回归分析要有实际意义;

(2)回归分析前,先作出散点图;

(3)回归直线不要外延。

高一数学复习方法推荐

读好课本,学会研究

同学们应从高一开始,增强自己从课本入手进行研究的意识。同学们可以把每条定理、每道例题都当做习题,认真地重证、重解,并适当加些批注。要通过对典型例题的讲解分析,归纳出解决这类问题的数学思想和方法,并做好解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,同学们要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,更是一个研究过程。

记好笔记,注重课堂

“要学好数学,培养好的听课习惯也很重要。”同学们在听课的时候要集中注意力,把老师讲的关键性部分听懂、听会。听的时候要注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性地记好笔记,领会课上老师的主要精神与意图。

做好作业,讲究规范

在课堂、课外练习中,培养良好的作业习惯也很有必要。同学们在做作业时,不但要做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径。作业应独立完成,这样可以培养独立思考的能力和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,拖沓的做作业习惯容易使思维松散、精力不集中,这对培养数学能力是有害而无益的。

写好总结,把握规律

“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”要学好数学,同学们就应该经常做好总结,把握规律。通过与老师、同学平时的接触交流,可以逐步总结出一般性的学习步骤,包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。应坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。

高一数学基础知识点 8

高一语文必修四知识点总结

一、《廉颇蔺相如列传》通假字

①可与不。“不”通“否”,表疑问语气。

②臣愿奉璧西入秦。“奉”通“捧”,用手托。

③拜送书于庭。“庭”通“廷”,朝廷。

④如有司案图。“案”通“按”,察看。

⑤设九宾礼于廷。“宾”通“傧”,古代指接引宾客的人,也指赞礼的人。

⑥秦自缪公以来,未尝有坚明约束者也。“缪”通“穆”。

⑦唯大王与群臣孰计议之。“孰”通“熟”,仔细。

⑧请奉盆缶。“奉”通“捧”,托、举。

二、《廉颇蔺相如列传》一词多义

①秦贪,负其强(依仗,凭借)

②臣诚恐见欺于王而负赵(辜负,对不起)

③相如度秦王虽斋,决负约不偿城(违背)

④均之二策,宁许以负秦曲(使……承担)

⑤廉颇闻之,肉袒负荆(背着)

使

①秦昭王闻之,使人遗赵王书(派)

②其人勇士,有智谋,宜可使(出使)

③乃使其从者衣褐(让)

④大王乃遣一介之使(使臣)

①引赵使者蔺相如(引见,延请)

②左右欲引相如去(拉)

③相如引车避匿(牵,拉;这里引申为调转)

高一语文下册必修三知识点

1、舒曼把它称为藏在花丛中的大炮,不是没有根据的。(这美好的音乐有时也是斗争的武器。是藏在花丛中的大炮。作为民族精神的支柱和基础的伟大艺术具有何等不可估量的威力。人们从肖邦音乐中获得了精神力量。)

2、只有他还住在这里,独自一人在雅致的房间里来回踱步。只有微弱的琴声在抗御风雪和寂静。只有音乐长存。(这里的他指的是肖邦的灵魂,他“身上那点最美好的东西”,肖邦的音乐就是肖邦的灵魂,它是永存的。)

3、灾难的忠实的姊妹——希望,正在阴暗的地底潜藏。

4、文化传统与传统文化并不一样,两者差别之大,几乎可以与蜜蜂和蜂蜜的差别相媲美。(传统文化指历代存在过的种种物质的、制度的和精神的文化实体和文化意识。文化传统指的是产生于历代生活,生活于民族的反复实践,形成为民族的集体意识和集体无意识,也就是民族精神。两者差别很大,但两者也有联系。民族精神存在于传统文化之中,所以可以比之为蜜蜂与蜂蜜。)

5、尼采就自诩过他是太阳,光热无穷,只是给与,不想取得。然而尼采究竟不是太阳,他发了疯。(以尼采作比,论述中国也不是太阳,不是光热无穷,不能只给予而不取得,否则将会使子孙穷困不堪。从而论证“送去主义”的行为是疯狂的。)

6、要不然,则当佳节大典之际,他们拿不出东西来,只好磕头贺喜,讨一点残羹冷炙做奖赏。

语文学习方法技巧

一、写一手好字,讲一口标准流利的普通话。写一手工整规范的汉字,说一口标准流利的普通话,不仅体现语文的基本功,也是高考的需要,现在高考作文要求中明确规定每一个错别字扣一分,上不封顶;卷面不洁也要适当扣分。而造成卷面不洁、错别字多的主要原因就是书写潦草、书写不认真。可有的同学对这个问题却不以为意,本来字写得就不好看,写字时还连蹦带跑,缺撇少捺,难以辨识。老师帮他指出问题,还振振有词说自己到正式考试就会认真写。其实,如果你平时没有养成认真书写的习惯,在考试的特定的紧张情绪中,当你想起要认真书写的时候,可能作文已经要接近尾声了。所以,我们平时写字时就要态度认真,一丝不苟。把字写得各部分均衡匀称,大小比例适当,规范大方,不写错别字,不乱涂改,不忽视标点,保证纸面(卷面)清洁。如果你的字现在没有写好,现在开始练习还来得及。俗语说,“练字不过百日”就是说,用一百天就能练一手好字,同学们不妨现在就去买一本好字贴,现在就开始练字。

如果说写一手好字,关系到一个人的脸面,那么讲一口标准流利的普通话,就体现了一个人素养。说丹东话并不能说明我们爱家乡,更何况我们丹东话并不太好听,也影响我们语文语感的形成,而语感对于我们理解课文平时考试地都有很大作用,平时做题时,有时说不清为什么,但却选对了答案,就是语感和语文综合能力的体现。所以,对于普通话,我们不仅要在课堂上说,而且在生活中也要说,规范自己的语言习惯,体现出自己较高的语文素养和综合素质。

二、养成零打碎敲勤积累的好习惯

我们每位同学都要准备一个积累本,这个本一定要保存好,高三复习时它就有大用途了,不夸张地说,到时千金不卖。平时我们要在本子里记下咬不准音、形、义的字词,需要背诵的古诗词,老师总结出来的方式方法,比较新奇的题型,可以说,无论是教材的还是试卷的,无论是报刊的还是杂志的,无论是谈话的还是阅读的,只要是自己拿不准的,只要是高考考的,都是我们应该积累的。积累的方法就是随时随地地有需要就分门别类地记在本上。对于学习,欧阳修善于利用“三上”的时间,即“马上、枕上、厕上”,郑板桥则利用“舟中、马上、被底”的零星时间读书背诵。古人勤奋读书的精神值得大家学习和借鉴。

三、养成勤于朗读背诵好习惯

朗读背诵是我国传统的学习语文的重要方法,是积累语言、培养语感的重要途径。朗读可以放到课前预习中,每篇课文都朗读2---3遍,在读的过程中划一划,查一查,问一问,写一写,做到一手拿书,一手拿笔,一边思考,一边朗读。不能平平淡淡的、漫不经心的读,朗读要做到吐字清晰,音准气足,节奏停顿合理,要有抑扬顿挫的韵律美,准确地体现出作者的情感。朗读人物的对话,要力求模拟出人物的心情、口吻,使人物形象活生生地站立在听者面前。朗读诗歌要铿锵悦耳,语势错落有致,节奏抑扬回环,具有音乐美。通过琅琅地朗读,文章的内容、情感、文句的优美、汉语音的韵律,也都能体会出来了。这有助于我们阅读能力的培养和阅读速度的提高,节省更多的阅读时间用来答题,进而提高答题的准确率。

关于背诵。俗话说“挖到篮子里才是菜”,意思是说,很多知识,你只有记住了才对自己管用。因此,必须想方法记住知识。记忆知识,可分为内储和外储。记在大脑里为内储,记在大脑以外,书本中、读书笔记中、日记中、摘抄本中、电脑里为外储。大脑是储存知识的仓库,据科学家们讲,大脑储存记忆知识的功能开发利用不到10%,应开发和充分利用大脑的储存功能,记忆储存更多的知识。因此,对积累本我们平时要经常翻看查阅,就可以把外储变为内储,真正转化为对自己有用的东西。很多知识只有经过不断的反复的强化记忆,才能在自己大脑里扎根。知识积累的多了,才能从根本提高自己的语文能力,才能在说话时、写作时、考试时把材料信手拈来,增强作文文采,提高语文成绩。

高一数学知识点总结 9

1、高一数学知识点总结:集合一、集合有关概念

1、集合的含义

2、集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大

括号内表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一数学知识点总结:集合间的基本关系

1、“包含”关系—子集

注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A

2、“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2

-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3、不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的集合叫做空集。

3、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集

关于集合的概念:

(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:

含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作N;

在自然数集内排除0的集合叫做正整数集,记作N+或N;

整数全体构成的集合,叫做整数集,记作Z;

有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元�

例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高一数学知识点总结 10

高一数学集合有关概念

集合的含义

集合的中元素的三个特性:

元素的确定性如:世界上的山

元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_N+整数集Z有理数集Q实数集R

列举法:{a,b,c……}

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}

语言描述法:例:{不是直角三角形的三角形}

Venn图:

4、集合的分类:

有限集含有有限个元素的集合

无限集含有无限个元素的集合

空集不含任何元素的集合例:{x|x2=—5}

高一数学总结 11

不知不觉20xx年已经过去,透过对教学的实践,对学生学情的掌握,以及对“精讲多练”教学要求的认识,我逐步适应了这个层次学生的理解潜力,学生也慢慢适应了我的这种教学模式。这是对我的一个检验,也使得我对教学有了更深层次的认识,为以后的教学做更充足的准备。以下是我在教学过程中的一些认识和感想:

一、根据学生学情教学

在教学中,我们常常把自己学习数学的经历作为选取教学方法的一个重要参照,我们每一个人都做过学生,我们每一个人都学过数学,在学习过程中所品尝过的喜怒哀乐,紧张、痛苦和欢乐的经历对我们这天的学生仍有必须的启迪。

但是,在开始的上课过程中,我常常看到学生茫然的眼神,伏案会周公的情形,以及一声声的“老师,我听不懂!”让我的内心觉得十分的不安:我是不是讲的太难了?太艰涩难懂了?回头想想,发现自己是以以前自身作为学生的状况来思考教学,并没有更多的思考此刻学生的状况。这时候,我认识到我们已有的数学学习经历还不够给自己带给更多、更有价值、可用作反思的素材。这时候就就应站在学生的角度,从学生的观点出发,参考并制定适合他们的教学方法,每个学生的状况都未必相同,理应先思考大多数学生的学习状况,然后能够适当的进行针对性的备课与教学。

二、备课小组组内交流探讨

这一年来透过与同事和学生代表交流,一致认为不就应急于求成赶进度,就应将学生的基础夯实,并将初中的部分相关知识点融入到课堂教学中。新课程对教学过程的要求是用生动的课堂过程激发学生的对数学的兴趣,让学生理解所学的基本知识点,把握学生在一节课内的情感流线,加强学生对解题过程的理解,使学生掌握自主探索的潜力最后才是让学生对知识点的应用。

透过对教学过程的探讨与交流,我们高一备课组成员达成对“精讲多练”教学要求的共识,在今后的教学过程中,力争做到精讲多练,更好地提高课堂教学的有效性。

三、认真听取学生对数学课的意见和推荐

由于在课堂教学过程中,第一周的学生状况不是很好,上课睡觉的学生大有人在,作业完成状况也不乐观,解题格式不清楚,概念混淆等状况时有发生。因此,我经常把他们对数学课的感受以及意见和推荐都写在纸条上交上来(无记名方式),我在阅读他们的意见和推荐的过程中,发现了许多自身的不足和学生的'基本状况:

1、讲多练少。这一点在之后的教学过程中已经逐步改善。

2、课堂例题应以课本为主,出题要有针对性,还要从易到难逐步递进。

3、题目讲解、分析要清晰明了,步骤要分明。这方面在听取多位老教师讲课后,大为改观,尤为体此刻作业完成状况上,解题格式明显清晰许多。

4、上课互动性的增强:在课堂中,对学生完成课堂练习的状况进行分析,分析学生的解题状况,透过提问其他学生,让全班学生帮忙分析错题原因,做到讲、练、评的有效结合。

在这一届高一学生中,学生的基础普遍较差,所以要耐心加细心,不能太急于求成。每次备课、上课前都应先思考上一节课学生的掌握状况进行备课、教学。并且在每次尽量将相关的初中知识点进行复习记忆,帮忙学生巩固初中知识。

四、对学生的要求及反馈

针对学生的上课表现以及课后作业状况,在第二周的时候我明确给学生提出了以下三个要求:

1、课前务必要预习新课资料。做好预习工作是学好这堂课的先决条件,没有预习,就不明白这节课所要上的资料是什么,自己所不会的是什么,更不清楚新课中的重点和难点在哪了。

2、上课时务必准备一本数学专用的笔记本,用来做课堂笔记以及课堂练习所用。上课要做到动脑、动手、动笔,只有多动手做题,理解解题过程,才能更加有效的将知识点吸收、理解和应用,才能更好的记忆有关知识点。

3、课后及时完成复习,认真的对教材中知识要点进行梳理,并且尽量独立自主地完成老师当天布置的练习和作业,透过练习巩固基础。多做题,从中发现自己的不足和缺漏是学好数学的重要方法。

高一数学知识点总结 12

1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。

高一数学总结 13

本学期我担任高一(4)、(6)两班的数学教学。本学期教学主要资料有:集合与函数的概念,基本初等函数:指数函数、对数函数,现将本学期教学总结如下:

一、教学方面

1、认真研究课程标准。在课程改革中,教师是关键,教师对新课程的理解与参与是推进课程改革的前提。认真学习数学课程标准,对课改有所了解。课程标准明确规定了教学的目的、教学目标、教学的指导思想以及教学资料的确定和安排。继承传统,更新教学观念。高中数学新课标指出:“丰富学生的学习方式,改善学生的学习方法是高中数学课程追求的基本理念。学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和理解,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。在高中数学教学中,教师的讲授仍然是重要的教学方式之一,但要注意的是务必关注学生的主体参与,师生互动”。

2、合理使用教科书,提高课堂效益。对教材资料,教学时需要作适当处理,适当补充或降低难度是备课务必处理的。灵活使用教材,才能在教学中少走弯路,提高教学质量。对教材中存在的一些问题,教师应认真理解课标,对课标要求的重点资料要作适量的补充;对教材中不贴合学生实际的题目要作适当的调整。此外,还应把握教材的“度”,不要想一步到位,如函数性质的教学,要多次螺旋上升,逐步加深。

3、改善学生的学习方式,注意问题的提出、探究和解决。教会学生发现问题和提出问题的方法。以问题引导学生去发现、探究、归纳、总结。引导他们更加主动、有兴趣的学,培养问题意识。

4、在课后作业,反馈练习中培养学生自学潜力。

课后作业和反馈练习、测试是检查学生学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生的自学潜力。在学完一课、一单元后,让学生主动归纳总结,要求学生尽量自己独立完成,以便正确反馈教学效果。

5、分层次教学。我所教的两个班,层次差别大,1班主要是落后面的学生,初中的基础差,高中的知识对他们来说就更增加了难度,而2班也是两极分化严重,前面16个学生的基础扎实,成绩在中等以上,而后面的30个学生的成绩却处于中下以下的水平,因此,不管是备课还是备练习,我都注重分层次教学,注意引导他们从基础做起,同时又不乏让他们能够开拓思维,用心动脑的提高性知识,让人人有的学,让人人学有获。

二、存在困惑

1、书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生的学习负担,而且学生完成状况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。

2、在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生听得似懂非懂,造成差生越来越多。而且知识资料需要补充的资料有:乘法公式;因式分解的十字相乘法;一元二次方程及根与系数的关系;根式的运算;解不等式等知识。

3、虽然经常要求学生课后要去完成教辅上的精选的题目,但是,相当部分的同学还是没办法完成。学生的课业负担太重,有的学生则是学习意识淡薄。

三、今后要注意的几点

1、要处理好课时紧张与教学资料多的矛盾,加强对教材的研究;

2、注意对教辅材料题目的精选;

3、要加强对数学后进生的思想教育。

总之,若一名高中教师,对教材的不熟悉,对重难点的突破,对考点的把握,对学生的方法指导,对高中教学的经验都是一个很大漏洞,我将把握好每一天,继续努力,争取更好的成绩。

高一数学知识点 14

【第一章:集合与函数概念】

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法

非负整数集(即自然数集)记作:N

正整数集:N__或N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能

(1)A是B的一部分,;

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实

例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:

①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:

有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

三、集合的运算

运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

【第二章:基本初等函数】

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈__.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号-表示。正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

3.实数指数幂的运算性质

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

【第三章:第三章函数的应用】

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点。

3、函数零点的求法:

求函数的零点:

(1)(代数法)求方程的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:

二次函数。

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

高一数学重点知识点总结梳理 15

立体几何初步

柱、锥、台、球的结构特征

棱柱

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

圆柱

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

圆锥

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球体

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、a—边长,S=6a2,V=a3

4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

5、棱柱S—h—高V=Sh

6、棱锥S—h—高V=Sh/3

7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3

8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6

9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

11、r—底半径h—高V=πr^2h/3

12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6

14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4

17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高一数学基础知识点要点总结 16

(1)再根据定义判定;

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定。

函数的解析表达式

(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域。

(2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法

函数(小)值

1利用二次函数的性质(配方法)求函数的(小)值

2利用图象求函数的(小)值

3利用函数单调性的判断函数的(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

高一数学总结 17

转眼间一学期的教学工作已接近尾声,为了更好地完成今后的教学工作,总结经验、吸取教训,本人就本学期的教学工作总结如下:

一、教育教学工作和其他方面

这学期,本人担任了高一年级两个班级的数学教学工作,取得了较好的教学成绩,得到了所担任班级学生的很好评价和充分爱戴。在本学期的教学工作中,所有教师都面临着全面贯彻和落实学校的新教育教学方法的重任,在工作中透过自身的学习研究、教师的合作交流及学生的充分配合,有效的将学校的新教学方针得以充分落实和发挥。

“授人以鱼,不如授人以渔。”反映在教学上,也就是说,教师不仅仅要教学生学会,更重要的是要学生会学。这就需要教师更新观念,改变教法,把学生看作学习的主体,逐步培养和提高学生的自学潜力,思考问题、解决问题的潜力,使他们能终身受益。下面,浅谈自己的几点做法。

1、在课前预习中培养学生的自学潜力

课前预习是教学中的一个重要的环节,从教学实践来看,学生在课前做不做预习,学习的效果和课堂的气氛都不一样。为了抓好这一环节,我常要求学生在预习中做好以下几点,促使他们去看书,去动脑,逐步培养他们的预习潜力。

①、本小节主要讲了哪些基本概念,有哪些注意点?

②、本小节还有哪些定理、性质及公式,它们是如何得到的,你看过之后能否复述一遍?

③、对照课本上的例题,你能否回答课本中的练习。

④、透过预习,你有哪些疑问,把它写在“数学摘抄本”上。也不要求学生就应记什么不就应记什么,而是让学生自己透过学习和练习区体会。

少数学生的问题具有必须的代表性,也有必须的灵活性。这些要求刚开始实施时,是有必须困难的,有些学生还不够自觉,透过一个阶段的实践,绝大多数学生能养成良好的习惯。另外,在课前预习时,我有时要求学生在学习过程中进行主角转移,站在教师的角度想问题,这叫换位思考法。在学习每一个问题,每项学习资料时,先让学生问问自己,假如我是老师,我是否弄明白了?怎样才能给别的同学讲清楚?这样,学生就会产生一种学习的内驱力,对每一个概念,每一个问题主动钻研,用心思考,自觉地把自己放在了主动学习的位置。如在讲“数列在分期付款中的应用”时,我把这节资料留给学生课前思考,他们用心发挥主观能动性,准备了超多不同类型的实例和有关的练习。加深了对问题的理解。换位教学法,不仅仅能改变传统的教师讲,学生听的旧模式,而且还激发了学生课前用心思考主动探索的兴趣。

2、在课堂教学中培养学生的自学潜力

课堂是教学活动的主阵地,也是学生获取知识和潜力的主要渠道。作为数学教师改变以往的“一言堂”“满堂灌”的教学方式显得至关重要,而应采用组织引导,设置问题和问题情境,控制以及解答疑问的方法,构成以学生为中心的生动活泼的学习局面,激发学生的创造xx,从而培养学生的解决问题的潜力。

在尊重学生主体性的同时,也要思考到学生之间的个体差异,要因材施教,发掘出每个学生的学习潜能,尽量做到基础分流,弹性管理。在教学中我采用分类教学,分层指导的方法,使每一位同学都能够稳步地前进。调动他们的学习用心性。对于问题我没有急于告诉学生答案,让他们在交流中掌握知识,在讨论中提高潜力。尽量让学生发现问题,尽量让学生质疑问题,尽量让学生标新立异。

在数学教学中有超多的解题活动,包括常规问题和十分规问题。教学实践的经验已经证明,题海战术不可取,重要的是交给学生数学解题的思维策略在解题活动中进行思维策略的训练。这种训练应包括解题过程的规范训练,常规问题的模式训练,十分规问题化归为常规问题的转换训练等。在课堂教学中,我的一个主要的教学特征就是:给学生足够的时间,这时间包括学生的思考时间、演算时间、讨论时间和深入探究问题的时间,在我的课堂上能够看到更多的是学生正在用心的思考、热烈的讨论、亲自动脑,亲自动手,不会将问题结果完全寄托于老师的传授,而是在用心主动的探索。现代认知心理学家J。S布鲁纳说过:“探索是数学教学的生命线。”他所倡导的发现学习的教学模式不是把学习材料直接呈现给学生,而是只给一些提示性的线索,要学生自己透过用心主动的探索活动来学习知识,掌握策略,解决问题,这对培养学生解决问题的潜力和创造性具有更加用心的好处。

3、在课后作业、反馈练习中培养学生的自学潜力

课后作业和反馈练习、测试是检查学生学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生的自学潜力。在学完一节、一课、一单元后,让学生动手“列菜单”,归纳总结,要求学生尽量自己独立完成,以便正确反馈教学效果,透过一系列的实践活动,把每个学生的学习用心性都调动起� 学生自学潜力的培养不是一朝一夕所能构成的,是要长期坚持的。科学安排,课前、课堂、课后三者结合,留给学生充分的自学机会。真正把学生推向主动地位,使其变成学习的主人,我想这也是每一位教育工作者所梦寐以求的结果吧。

二、思想工作日常工作方面

俗话说:“活到老,学到老。”本人一向在各方面严格要求自己,努力地提高自己各方面的素质,以便使自己更快更好地适应社会发展的形势。透过阅读超多的道德修养书籍,勇于解剖自己,分析自己,正视自己,提高自身素质。在学校组织的青年教师教学基本技能大赛和优质课评选活动中,用心参与,用心宣传,用心帮忙计算机水平不高的教师制作教学课件以提高活动和大赛的水平。

工作期间本人严格遵守学校的各项规章制度,不迟到、不早退。在工作中,尊敬领导、团结同事,正确处理与领导、同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,用心地培养自己的综合素质和潜力。

三、业务进修方面

随着新课程改革的逼近和新课程改革对教师业务潜力要求的提高,本人在工作之余,抽出部分时间透过网络用心参加全国教师继续教育培训学习,并阅读超多有关教育和教学的专业书籍,而且也不断地充实和提高自己的计算机水平,充分地掌握多媒体课件制作以适应以后的新课程教学,并主动帮忙同事们学习和制作教学课件。

高一数学知识点总结 18

幂函数定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x0的所有实数,q不能是偶数;

排除了为负数这种可能,即�

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况。

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数。

高一数学重点知识点总结梳理 19

函数的值域与最值

1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

如函数的值域是(0,16],值是16,无最小值。再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响。

3、函数的最值在实际问题中的

应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

高一数学基础知识点上册 20

考点要求:

1.几何体的展开图、几何体的三视图仍是高考的热点。

2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势。

3.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型。

4.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。

知识结构:

1.多面体的结构特征

(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

2.旋转体的结构特征

(1)圆柱可以由矩形绕一边所在直线旋转一周得到。

(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。

(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

3.空间几何体的三视图

空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

4.空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,基本步骤是:

(1)画几何体的底面

在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

(2)画几何体的高

在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

高一数学重点知识点总结梳理 21

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号-表示。正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

3.实数指数幂的运算性质

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

【第三章:第三章函数的应用】

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点。

3、函数零点的求法:

求函数的零点:

(1)(代数法)求方程的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:

二次函数。

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

3.2.1几类不同增长的函数模型

【课 型】新授课

【教学目标】

结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性。

【教学重点、难点】

1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

2.教学难点 选择合适的数学模型分析解决实际问题。

【学法与教学用具】

1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索。

2.教学用具:多媒体。

【教学过程】

(一)引入实例,创设情景。

教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导。

(二)互动交流,探求新知。

1. 观察数据,体会模型。

教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流。

2. 作出图象,描述特点。

教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据。

(三)实例运用,巩固提高。

1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益。学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流。

2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的'影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异。

3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。

4.教师引导学生利用解析式,结合图象,对例2的三个模型的增长情况进行分析比较,写出完整的解答过程。进一步认识三个函数模型的增长差异,并掌握解答的规范要求。

5.教师引导学生通过以上具体函数进行比较分析,探究幂函数(>0)、指数函数(>1)、对数函数(>1)在区间(0,+∞)上的增长差异,并从函数的性质上进行研究、论证,同学之间进行交流总结,形成结论性报告。教师对学生的结论进行评析,借助信息技术手段进行验证演示。

6. 课堂练习

教材P98练习1、2,并由学生演示,进行讲评。

(四)归纳总结,提升认识。

教师通过计算机作图进行总结,使学生认识直线上升、指数爆炸、对数增长等不同函数模型的含义及其差异,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值和内在变化规律。

(五)布置作业

教材P107练习第2题

收集一些社会生活中普遍使用的递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用,并思考。有时同一个实际问题可以建立多个函数模型,在具体应用函数模型时,应该怎样选用合理的函数模型。

3.2.2 函数模型的应用实例(Ⅰ)

【课 型】新授课

【教学目标】

能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题。

【教学重点与难点】

1.教学重点:运用一次函数、二次函数模型解决一些实际问题。

2. 教学难点:将实际问题转变为数学模型。

【学法与教学用具】

1. 学法:学生自主阅读教材,采用尝试、讨论方式进行探究。

2. 教学用具:多媒体

【教学过程】

(一)创设情景,揭示课题

引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”。这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.

比例激发学生学习兴趣,增强其求知欲望。

可引导学生运用方程的思想解答“鸡兔同笼”问题。

(二)结合实例,探求新知

例1. 某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶。试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程。

探索:

1)本例所涉及的变量有哪些?它们的取值范围怎样;

2)所涉及的变量的关系如何?

3)写出本例的解答过程。

老师提示:路程S和自变量t的取值范围(即函数的定义域),注意t的实际意义。

学生独立思考,完成解答,并相互讨论、交流、评析。

例2.某商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商店制定了两种优惠办法:

1)本例所涉及的变量之间的关系可用何种函数模型来描述?

2)本例涉及到几个函数模型?

3)如何理解“更省钱?”;

4)写出具体的解答过程。

在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。数学模型可采用各种形式,如方程(组),函数解析式,图形与网络等。

高一数学知识点总结 22

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行——没有公共点;两个平面相交——有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高一数学学习成绩差怎么办 23

一、回归课本

从高一开始,学生就应该增强自己从课本入手进行研究的意识。同学们可以把每条定理、每道例题都当做习题,认真地重证、重解,并适当加些批注。要通过对典型例题的讲解分析,归纳出解决这类问题的数学思想和方法,并做好解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,同学们要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,更是一个研究过程。

二、记好笔记,注重课堂

学生日常在听课时要集中注意力,把老师讲的关键性部分听懂、听会。要注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性地记好笔记,领会课上老师的主要精神与意图。

三、做好作业,讲究规范

在课堂、课外练习中,培养良好的作业习惯也很有必要。学生平常在做作业时,不但要做得整齐、清洁,还要有条理,作业独立完成,讲究效率,拖沓的做作业习惯容易使思维松散、精力不集中,这对培养数学能力是有害而无益的。

四、写好总结,把握规律

要想学好数学,学生们应该经常做好总结,把握规律。通过与老师、学生平时的互动交流,可以逐步总结出一般性的学习步骤,包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。应坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。

一键复制全文保存为WORD
相关文章