身为一名人民教师,课堂教学是重要的工作之一,通过教学反思可以快速积累我们的教学经验,来参考自己需要的教学反思吧!
圆面积公式的推导是在学生掌握了平行四边形、三角形、梯形的面积公式推导后进行的。所以在设计教学时,特别注意遵循学生的认知规律,重视学生获取知识的过程,重视从学生的生活经验和已有知识出发进行教学设计,为学生自主探究创造条件。
为学生探究做好铺垫。先让学生回忆一下以前学过的平面图形的面积公式的推导方法,并利用多媒体课件再现推导过程。学生在回顾旧知识的过程中,领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成学过的图形来推导的,从而渗透转化思想,并为后面自主探究推导圆的面积作好铺垫。
引导学生主动探究。让学生按照老师的要求来推导面积公式,学生以小组为单位,通过合作拼摆,把圆转化成已学过的图形,并在操作过程中,学生边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=周长的一半×半径。当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在学生推导出面积公后,我又利用课件的演示,引导学生观察发现“等分的份数越多,拼成的图形就越接近于长方形”,从而渗透极限的思想。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来。学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由地发展,亲身经历了知识的`迁移过程,体验了成功的喜悦。
通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能培养学生逻辑思维的能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下方探究圆的面积计算的方法奠定基础。
一、动手操作,推导圆的面积公式
学生透过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。透过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决问题的潜力得到了提高。
二、多媒体辅助教学,教学资料立体呈现
透过学生的操作,教师再运用Flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。透过计算机的声、光、色、形,综合表现潜力,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的用心性、主动性、创造性。
三、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习状况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用潜力。在每一道练习题的设置上,都有不一样的目的性,教师注重了每个练习的指导侧重点。总之教学中教师能够充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学。
《圆的面积(二)》是在学生掌握了圆的面积计算公式的基础上进行教学的。主要是让学生利用圆的面积公式,解决生活中的一些实际问题,体会转化的数学思想。在本课的开始,我请学生回忆圆面积公式的推导过程。已知周长,求圆的直径、半径。在此基础上,让学生独立解决已知半径,求面积,已知直径,求面积,已知周长,求面积三个问题,学生在这种情况下,学习圆的面积计算,有利于知识的迁移。
在教学过程中,我从根据圆的半径,直径,求圆的面积,到根据圆的周长计算圆的面积,体验其中的不同,先让学生已知半径,求面积,已知直径,求面积,再到已知周长求面积,这样设计降低了教学难度,使学生明白要求圆的面积必须知道圆的半径,从而突破了教学难点。
在学生掌握了圆的面积计算方法以后,我让学生猜测,圆还可以转化成我们以前学过的什么图形,圆的面积与什么有关,让学生进行估测,当学生猜测出圆还可以转化成我们以前学过的三角形,圆的面积,可能与圆的半径有关系时,设计实验验证。沿半径把圆形杯垫剪开,并把纸条从长到短排列起来,观察并探索圆的面积公式,出示和圆有关的组合图形,让学生通过仔细观察与分析,结合前面学过的平面图形的面积知识,求出老师出示的组合图形的面积。学生的好奇心,求知欲被充分调动起来,而这些为他们随后进一步展开探索活动做好铺垫。
我在本节课中利用动画演示与动手操作相结合,加深学生对题目的理解,结合所学的知识,让学生学以致用,解决创设的情境问题等基础练习,提高练习,综合练习,拔高练习四个层次,从四个不同的层面对学生的学习情况进行检测。既巩固所学的。知识,又锻炼了学生的综合运用能力,拓展学生的思维,注重了每个练习的侧重点,较好地完成了教学目标,学生学习积极性高,乐学,课堂气氛活跃、和谐,学生亲身经历提出猜想,动手实验、验证,得出结论的过程,对知识进行再创造。
教学中存在不足和需要改进的地方:没有加强训练小学生的计算能力,在上课过程中发现学生的计算速度比较慢,学生还没有达到熟练的程度,特别是当半径等于一个小数,这时学生最容易犯错。在以后练习中,重点训练小数的平方,达到正确解决问题的目的。
“圆的面积”一课,经过让学生积极主动参与知识的构成的全过程来获取知识,提高学生的归纳、推理的数学思维本事,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫做“无心插柳柳成荫”。
1、课前提出教学目标。
教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,� 学习目标明确后,我发现两个班的孩子在研究的时候都井然有序,没有不明白该如何入手的,都明确自我在讨论什么,要解决什么问题。汇报的的时候都明白围绕着课前所提出的学习目标回答,没有乱说的,巡讲后我从实践中体会到:教学目标是课堂教学的出发点和最终归宿,教师仅有明确教学目标才能更好的驾御课堂;学生仅有明确学习目标才能积极参与,事半功倍。
2、教学形式上,应因材施教,不一样的班级和学生采取不一样的教学方法。
课堂中,每名学生都是我们的教育对象,不一样的班级,风格、特点也不一样。101班的学生比较安静,开始不十分敢发言,于是在复习以前学过的基本图形的面积推导时,我先回忆各种图形的面积推导过程,孩子们说得很好,我也大加赞赏,等他们慢慢熟悉我后,我利用小组讨论来活跃气氛,效果不错,总结时发言的同学多了起来,回答也很到位。98班的学生很活跃,思维快,都抢着举手,学生和我配合也默契。我把知识完全放手交给他们自我解决,,把所能想到的方法都用上了:讨论、自学、猜想。学生们都能积极参与,汇报时公式的推导过程说的很完整,练习题计算起来也不费劲。应当说98班是巡讲中讲的最梦想的班级。
在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生供给充足的时间、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我最大的收获是教学中的应变本事提高了,不一样的学生给了我不一样的体会。当然也发现了自我的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改善的地方;在提出一个问题后应给予学生必须的思考时间,不要过急。
在今后的教学中我会深深记住这次巡讲,继续改善自我的教学水平。
圆的面积是学生在学习了圆的基本特征以及圆的周长的基础上进行探讨、学习的,因为学生在学习圆的周长的时候已经了解了化曲为直的数学思想,所以,在学习圆的认识的时候继续渗透这种思想,以及再引申到数学的极限思想。这有利于学生知识的迁移,也是学生在学习上的又一次突破。因此,在教学中我注重以下几个环节的教学:
一、回顾五年级多边形面积的计算公式推导方法,引导学生求圆的面积也可以把圆转化成学过的图形,从圆的周长到圆的面积体验其中不同 本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、让学生猜测,激发探究,在了解圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的� 这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来。
三、演示操作,加深理解,当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个之前准备好的圆,小组拼一拼,说一说能拼成什么图形?并思考它与圆有怎样的关系。 这样,通过学生操作,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。
四、引导学生主动参与知识的形成过程。 本课时教学的重点是圆的面积计 算公式的推导。教学时,我作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。学生则以小组为单位,通过合作剪拼,把圆转化成学过的图形(平行四边形),我把各小组剪拼的图形逐一展示后,又结合课件演示,引导学生通过观察发现“分的份数越多,拼成的图形就越接近于长方形”,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,学生的空间观念得到进一步发展。
五、存在和改进的地方有:
1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;
2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0。3厘米,求圆的面积,有部分学生会把0。3的平方算成是0。9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!
“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。本节课基本体现教案设计的意图,能基本完成教学目标。以下有几点体会:
1、教学中我鼓励学生大胆猜测圆的面积
发现有的孩子在观察后凭直觉能马上提出猜想,而且这些猜想都含有很多合情推理的成分;当然也有一些孩子开始有“斗大的馒头无从下手”之感,但经过同学间的交流,也逐渐有了较为明确的想法。当学生提出猜想后,我适时进行点拨,以促进学生的思维从合情推理水平向逻辑推理水平过渡。如我向学生提问:是不是这些猜想都是正确的呢?如何去证明?借机将解决问题的权利交给学生,让他们自己动手、动脑去证明,通过独立思考和小组交流,让学生对圆的面积有更深入的理解,教学难点也顺利突破。
2、体现学生的主体性:
在整节课堂,我重视学生知识的获得,更重视学生获取知识的过程。围绕引导探索教学模式中的提出问题分析问题,解决问题一般结构进行,先由教师提出问题,怎样求圆的面积?然后由学生自己提出解决的方向,研究的目的明确后,由学生以小组为单位,合作进行拼成已学过的图形,并推导出公式,在整堂课中,剪拼、汇报、推导公式,都是学生自己完成的,教师放手让学生唱主角,注重学生的参与及体现了学生的主体性。
3、渗透了学习评价:
在课尾结束时,我问学生:“这节课有什么感受?”学生们纷纷回答,其中一位学生说到:“这节课我认为我们小组表现得非常好,如?”;“我认为甲同学今天表现得很好,可以评为今天的闪亮小明星。”?学生们不仅总结了这节课学到的知识,也总结了同学的上课表现,体现了人文关怀,得到同伴的赞扬更能激发学习的热情和自信心。
4、不足之处:
我原先设计的校园情景图,想让学生理解在我们周围,数学问题无处不在,让数学更贴新生活培养学生的一种数学意识,但由于多种原因没有用。同时,由于学生探究过程中会出现许多我料想不到的事情和结果,对老师的临场处理是个考验,每位教师都应具备良好的教学机智。
1、运用转化思想,解决数学问题。在教学过程中,我首先借助估算了解圆的面积的意义,再让学生利用学具进行操作,自主发现圆的面积与拼成的平行四边形的面积的关系,推导出圆的面积计算公式,降低了学习的难度;同时在教学中将“化曲为直”(即把圆进行分割,学生在剪拼过程中,从已有的知识经验慢慢找到解决圆面积计算公式的方法,激发学生的求知欲望)和转化的数学思想渗透到学生思维中,让学生注重知识的发现和探究的过程。
2、注重联系生活实际,开展探究性的。数学活动。学生从认识直线图形发展到认识曲线图形是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已经具有了一定的逻辑思维能力,已经有了许多机会接触到数与计算、图形与几何等较为丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,因此在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识的发现和探究过程,让学生从中获得学习数学的积极情感体验和感受数学的价值。
3、练习设计有坡度,由浅入深地巩固新知。教师在指导课堂练习时,先是让学生解决马儿的困惑,也就是知道半径求圆的面积,然后是知道直径求圆的面积,在拓展提高中告诉圆的周长,解决与圆面积有关的问题。练习安排坡度适当、由易到难,使学生由浅入深地掌握了知识,形成了技能。同时还培养了学生的逻辑思维和推理能力。
4、重视图示的作用。结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
在教授《圆的面积计算》这一课程后,我进行了深入反思,期望能改进教学方法,提升教学效果,助力学生更好地掌握知识。
教学目标的达成是教学的核心。在这堂课中,我旨在让学生理解圆面积公式的推导过程,并能够熟练运用公式计算圆的面积。从课堂表现来看,大部分学生能跟上推导思路,通过将圆转化为近似长方形,理解了圆面积与半径的关系,掌握了公式 S = πr。然而,在课后作业批改中,我发现部分学生在实际运用公式时出现错误,例如将半径平方计算错误,或者在已知直径求面积时,未正确转换为半径。这表明在公式运用的练习环节,我设置的题目类型不够全面,对学生计算能力的训练不足。
教学方法的选择对学生的学习效果有着重要影响。为了帮助学生理解圆面积公式的推导,我采用了多媒体演示与实物操作相结合的方式。通过动画展示将圆分割成若干个小扇形,再拼接成近似长方形的过程,让抽象的知识变得直观形象。学生们在观察过程中表现出浓厚的兴趣,积极参与课堂讨论。同时,我还让学生自己动手剪拼圆形纸片,亲身体验转化过程。但在实际操作中,由于部分学生动手能力较弱,不能很好地完成拼接,影响了对知识的理解。这提示我在今后的教学中,应在操作前给予更详细的指导,或者提前让学生预习相关内容,提高操作的效率和质量。
课堂互动环节,我积极鼓励学生提问、发表自己的见解。多数学生能够积极思考,但仍有少数学生参与度不高,较为被动。这可能是由于我在课堂提问时,问题的设计没有充分考虑到不同层次学生的需求,导致部分基础薄弱的。学生无法跟上节奏。在今后的教学中,我要精心设计问题,从简单到复杂,逐步引导学生思考,让每个学生都能在课堂上有所收获。
在教学过程中,我也意识到对数学文化的渗透不足。圆作为几何图形中重要的一员,在数学历史和文化中有着丰富的内涵。例如,古代数学家对圆周率的研究历程,是非常好的教学素材。在今后的教学中,我可以适时引入这些内容,不仅能拓宽学生的知识面,还能激发学生对数学学习的兴趣。
通过对《圆的面积计算》这堂课的反思,我明确了自身教学的优点与不足。在今后的教学中,我将不断改进教学方法,优化教学过程,注重因材施教,提高教学质量,帮助学生更好地学习数学知识。
在课堂教学中培养学生的创新技能必须依靠微妙的熏陶方法,让学生在不断学习的过程中感受到创新思维的技能。以下是我对本课教学的思考:
i、以旧促新
知道圆的面积后,自然会想到如何计算圆的面积?公式是什么?如何求和推导圆的面积公式?这些都是摆在学生面前的一系列实际问题。在这个时候,学生们可能会不知所措或做出惊人的发现。在任何情况下,鼓励学生大胆猜测、想象并说出他们预设的计划?如何计算圆的面积?在课堂上,根据学生反应的随机处理,估计大多数学生不会得到分数。即使他们理解,他们也可以让每个人体验发现公式的方法。此时,由于学生年龄较小,无法与以前的平面图形建立联系,需要老师的指导。他们以前学过什么平面图形?让学生快速回忆,调动原有的知识储备,为新知识的“再创造”做好准备。
II、根据发现更改图形
,将圆分成几个相等的部分,分组合作,用手放好,并将圆转换为学习的平面图形。为了研究学生的实际情况,计算机首先演示了2个、4个和8个相等的圆,这些圆分别组装成一个近似的平行四边形,以便学生观察它越来越像什么形状?你为什么说“喜欢”平行四边形?让学生表达自己的观点,充分肯定自己的观察结果。如果8个相等的部分有点像,那么16个相等的部分呢?计算机继续演示一个圆的16个相等部分,并将它们进行比较。哪个更像平行四边形?学生们会发现16个相等的部分比8个相等的部分更相似!因为它的底波波动相对较小且接近直线,所以引导学生闭上眼睛。如果它被分成32个相等的部分,会发生什么?64等分&Hellip&Hellip让学生展开想象的翅膀,使等分越多,就越像和接近平行四边形,最后它会变成一个长方形。完成另一个重要数学思想的渗透极限思想。
III、公式推导
学生可以计算矩形的面积:S=AB引导学生观察矩形和圆的长度和宽度之间的关系:找到长度=&PIR,宽度=R,矩形的面积=圆的面积,从而推导出s=AB=&pir2
IV、注重合作
注重小组学习,促进合作交流。实践证明,小组讨论有利于调动全体学生的积极性,有利于师生之间和学生之间的信息交流,有利于不同思维的碰撞。循环推导过程的创新更适合采用合作探究的学习方法。在本课程的教学中,教师从学生手中的材料入手,让学生摇摆,结合自己的创新说点什么,通过小组合作开展探究活动,不仅鼓励学生自主尝试,同时也重视学生之间的合作与互助,为学生提供多方位交流的机会,提高学生的合作学习意识。学生在学习中相互交流,提高了观察、分析和解决问题的能力。
v、培养创新
将传统的知识转移过程转变为“问题解决”序列的探究过程。在教学过程中,创设一些学生需要开辟新途径解决的问题情境,有利于提高学生的创新能力。
VI、 演练设计
对于巩固演练,遵循由浅到深、由易到难、循序渐进的原则。使学生在理解概念的基础上正确掌握公式,并能运用所学知识解决实际问题。
VII、存在的问题
在教学过程中,由于教学量的增加,学生也应该花更多的时间思考和推导圆的面积公式。详细设计应仔细安排。这是教学需要改进的地方,也是今后努力的方向。
圆的面积是学生在初步认识了圆,学习了圆的周长,以及在认识了几种平面图形面积的基础上进行教学的。圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
一、情境的引入,激发兴趣。
课的开始,我运用两只羊争吵的'情境(一只在长方形羊圈里,另一只系在木桩上),比较长方形和圆的面积,既复习了长方形的面积,也激发了学生探究圆的面积的兴趣。
二、探究的方法,孰优孰劣。
在探究圆的面积的这一-环节,教材上,先用数方格的方法得出圆的面积是多少,并让学生填好表格,以期发现圆的面积与半径的关系。这部分内容的教学旨在激活学生己有的经验,数出圆的面积,教材表格中却给出了正方形的面积,以及圆的面积大约是正方形面积的几倍。我认为这有些强拉着学生走,并不真正出于学生内在的探究需求。因此,在课的开始,我把这部分内容暂且放着。
在五年级上册,学生们已经学过用数方格的方法来探究像手掌、树叶等曲线图形的面积;还探索过平行四边形、三角形、梯形的面积。根据这些已有的经验,学生自己可以提出探究圆的面积的两种方法。在发现用数方格的方法的局限性后,重点研究如何用转化的方法探究圆的面积。
三、探究的过程,自主操作。
这部分内容的教学,考虑到了学生的现实认知水平,先让学生在自主探索、实践操作、合作交流中找到转化的方法,在此基础上,借助课件,使学生合乎情理地认识到:平均分的份数越多,就越接近长方形,有机渗透了极限的思想,体会了“化圆为方、化曲为直”的转化过程。接着让学生根据提示探索圆的面积的计算公式。
学习内容:
圆的面积(教材16、17、18、页)
学习目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积的计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3、在估一估和探究圆面积计算公式的活动中,体会“化曲为直”的思想,初步感受极限的思想。
学习重点:
经历圆面积计算公式的推导过程,掌握圆面积的计算公式。
学习难点:
了解圆的面积的含义,并能运用圆面积的知识解决一些简单的实际问题。
教学准备:
等分好的圆形纸片
学习过程:
一、自主复习
写出正方形、长方形、平行四边形、三角形、梯形的面积公式并回忆面积公式的推导过程。
二、自主预习
(一)感知圆的面积。
任意画一个圆,用彩笔涂出它的面积。
我知道:圆所占平面的( )叫做圆的。面积。
(二)、观察P16中草坪喷水插图,思考:喷水头转动一周,所走过的地方刚好是一个什么图形?说说这个圆形的面积指的是哪部分呢?圆的半径是多少?
(三)估一估
请你估计半径为5米的圆面积大约是多大?
先独立思考后观察分析书16页的估算方法。你还有其他的方法吗?可以记录下来。
三、小组交流自主预习部分
四、自主探索圆面积公式
1、思考:怎样计算圆的面积呢?我们能不能从平行四边形、三角形、梯形的面积公式推导过程得到启发呢?能不能也将圆通过剪拼成一个我们学过的图形呢?(提示:可以把圆转化成长方形来想一想)
2、动手操作:在硬纸上画一个圆,把圆平均分成若干(偶数)等份,沿半径剪开拉直,再用这些近似等腰三角形的小纸片拼一拼。
拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?
第一步:把圆平均分成8份,拼一拼,拼成了一个近似的( )
第二步:把圆平均分成16份,拼一拼,拼成了一个近似的( )
第三步:把圆平均分成32份,拼一拼,拼成了一个近似的( )
如果分的分数越( ),拼成的图形就越接近于( )。)比较剪拼前后的图形,发现( )变了,( )没变。
3、我来推导:把圆转化成平行四边形后,平行四边形的底相当于圆的( ),高相当于圆的( )。因为平行四边形的面积等于( ),所以圆的面积等于( )。如果用S表示圆的面积,圆的面积公式表示为:( )
4、公式的推导:
平行四边形面积=底×高
圆面积=
1、还可以怎样拼接成长方形动手试一试并完成下面的填空
把圆转化成长方形后,长方形的长相当于圆的( ),宽相当于圆的( )。因为长方形的面积等于( ),所以圆的面积等于( )。如果用S表示圆的面积,圆的面积公式表示为:( )
长方形的面积=长×宽
圆面积=用字母表示圆面积公式:
五、小组交流
1、圆面积公式的推导过程
2、如何计算圆的面积
六、全班交流教师总结
七、学习检测
1、填空。
求圆的面积必须知道( )利用公式S =( )来计算。
2、解决书16页上面喷水池转一周浇灌草坪面积?
3、计算,求圆的面积: (1)r=2cm(2)d=10cm
4、一个圆形花坛的周长是6.28分米,它的面积是多少平方分米?
八、交流展示
九、回顾反思
通过今天的学习,你学会了什么?还有那些疑惑?
反思:
我觉得本节课的教学,并不是简单的公式传授,要突出数学思想方法的渗透,让学生积极主动参与知识的形成过程。
首先操作活动中要充分显示了学生的潜能。学生在将16等份圆拼成已知图形时,并没有完全像课本一样拼成长方形,而是根据自己的基础,有的拼成了平行四边形,占多数,有的拼成了三角形,有的拼成了梯形,并都能够据此而推导出圆面积计算公式。因此,让学生经历知识的形成过程,渗透转化的数学思想。让学生经历圆的面积公式的推导过程。在教学中,可以放手让学生运用转化的方法进行操作,把一个圆通过分、剪、拼等过程,转化成一个近似的平行四边形,还有其他图形,从中发现圆和拼成的平行四边形的联系,并根据长方形的面积公式推导出圆的面积的计算公式。在这一过程中,不但使学生有效地理解和掌握圆的面积的计算公式,而且也让他们获得了数学思想方法,并培养了学生探索问题的能力。
面积公式应用实际问题。通过知道半径、直径求出圆面积,解决简单的实际问题的练习,通过这些练习,有助于学生巩固圆的面积的有关知识,形成运用技能,培养学生的数学能力。
一开始我看这个课题的时候,觉得很好玩,但是看看课的内容我觉得非常的简单,上公开课会非常乏味。后来想想这节课其实是以后所有造型表现课的基础,练习线条和涂色,这两个基本元素虽然简单,但是想画好对于有些孩子来说还真是一个难点。
我把这节课的目标订得很低,就让学生学会画同心圆,学会在同心圆里画圆就好。这么简单的教学内容,我如何激发学生的学习兴趣是我要思考的一个问题。
1、作业练习,分层次进行
现在我们都提倡美术课堂练习分两次进行。因此,我把这课的作业就进行了分层练习,第一次就让学生练习画同心圆,第二次进行涂色的练习。一年级的学生注意力集中的时间不是很持久,这样的两次练习比较适合。通过第一次的练习展示,学生知道了怎样的同心圆是比较美观的标准的,这样可以和自己的作品进行一次对比,如果画的不好的孩子还有机会进行重画或修改。
2、配上音乐画画
本节课我给学生配上两段不同的'音乐,不过都以欢快的为主。在第一次练习的时候,我用音乐控制学生的作画时间,音乐一停学生就要放下笔,音乐对我的课堂调控提供了很大的帮助。第二次的练习时间较长一些,个别学生可能会不自觉的讲话了,我叫告诉学生,如果音乐停止了就说明纪律不好了,要马上停止说话。我给学生播放欢快的音乐还有一个目的,快节奏的音乐能加快学生的作画速度。学生在欢快的音乐声中画画是一种享受。
3、我和大师比一比
出示大师康定斯基的作品《方块与同心圆》,让学生找找这里的造型、色彩元素。同时我介绍了大师的生平,这位大师的绘画售价曾近一千五百万美元,是一位很有成就的画家,如果我们每个同学都认真画画的话,有可能超过大师。这样一说,每个孩子都来劲了,都说自己能超过画家,有了动力,画画就有激情了。
这节课学生在轻松的氛围中,进行了线条和涂色的练习,虽然简单,但是学生学得扎实。
《圆的认识》一课。它是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开,也是小学阶段认识的最后一种常见的平面图形。我的教学思路是先借助图片揭示出圆,让学生感受到圆与现实的密切联系,在此基础上,再引导学生通过折一折、画一画、量一量等活动,帮助学生认识直径、半径、圆心等概念,同时掌握圆的基本特征。我立足从知识与生活两个角度指导学生进行探索。
我主要采用如下教学策略和方法:
1、遵循教师主导、学生主体和以实验、探究为主线的理念,采用设问-思考-小组讨论-动手验证-抽象概括的学习方法。
2、实践法。
3、小组合作讨论法。上完这节课,我感受比较深的有以下三点:
1、目标是教学的灵魂。
心有多大,舞台就有多大。我在制定这节课的教学目标时,对教材进行反复阅读,查阅了大量资料,充分考虑了小学六年级学生的心理特征和认知能力,确立教学目标。
2、体验是成功的'基石。
对于圆的特征的认识,我打破了传统的教学模式,而是让学生在课前自学的研究中自己建构知识,通过学生的自主探索、想象验证、合作交流等活动,引领学生成为发现者、研究者,在对话交流中使知识、能力、方法、情感等以自然建构与生成。
3、数学文化应多方面渗透。
在探究圆的本质特征时结合中国古代关于圆的记载,从历史的视野上去丰富学生原有的认知结构;用数学的眼光解释生活中圆的应用,努力使圆所具有的文化特性浸润于学生的心间,让学生的数学成长与美丽同行。
存在不足:
当然,理想的课程如何转化为现实的课程,这当中仍然有许多值得深切关注的话题。就拿本课教学而言,实施下来,应该说,学生对于圆这一冰冷图形背后所蕴含的人文的、文化的特性的感受还是十分真切的,然而,作为问题的另一方面,对于基本的数学知识、数学技能的掌握,在教学后的反馈中也确实暴露出了一定的问题,尤其表现在部分学生对于圆的半径、直径等概念的理解不够到位,对于直径、半径及其与圆之间的关系的掌握不够透彻等。因而,今后我们在数学课堂演绎数学文化、数学精神等层面的同时,如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,应该还是有一定的启示意义的。
《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生运用已有的知识经验来实现“新知到已知”的转化,最后推导出圆的面积计算公式。
在教学本课时,我努力做到了以下几点:
1、重视学生活动经验的积累。先引导学生用“数方格”的计算圆面积,感受到其方法既不方便又不准确,再启发学生“能否将圆转化成我们学过的图形进行研究”。在此过程中,充分调动学生已有的知识经验,回忆平行四边形的面积计算公式的推导过程,以实现学生对“新知转化为已知”这一数学学习方法的迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经历“转化”的过程,进一步促进了学生对这一方法经验的内化。
2、重视培养学生“数学化”的口头表达能力。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的发现,让学生深刻感受到化曲为直中“无限接近”的极限思想。在发现新拼成的平行四边形的与圆的联系后,引导学生用“因为……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培养了学生思维的严密性和语言表述的准确性。
3、充分发挥多媒体课件的作用。在教学中,教师通过课件演示,直观形象地再现了拼成的平行四边形与圆各部分之间的联系(底相当于圆周长的一半,高相当于圆的半径),轻松化解了教学难点,让学生教容易地推导出了圆的计算公式。
不足之处:
1、在引导学生“把圆转化成已学过的图形”进行面积研究时,教师缺乏有效的启发——为什么要把“曲”化为“直”,缺乏必要的指导——圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、由于担心学生知识底子薄,无法按时推导任务,教师在引导学生发现“拼成的新图形和圆的联系”时,牵的多,放的少,抑制了学生思维的主动性、独立性和创造性。
圆的面积是最基本的平面图形,圆的面积这一课是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我个性注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。在这节课的教学中,一开课我从学生的知识基础出发,让学生回忆一下以前学过的平面图形的面积计算公式的推导方法,并利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是透过切、割、拼的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究“能不能把圆转化为以前学过的图形来计算本课时教学的重点是圆的面积计算公式的推导。教学时,教师作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。学生则以小组为单位,透过合作剪拼,把圆转化成学过的图形(平行四边行),我把各小组剪拼的图形逐一展示,引导学生透过观察发现”分的份数越多,拼成的图形就越接近于长方形并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以用心主动的状态参与学习讨论,共同经历知识的构成过程,体验成功的喜悦。这样的学习方式不仅仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践潜力、探索精神。在掌握数学学习方法的同时,数学来源于生活又服务于生活,能够应用所学知识解决生活实际问题这是学习数学的最终目的。在本节课中,无论是新课的导入,还是新知的巩固应用,我都十分注重从生活中收集素材,如:装饰老师家的一张旧圆桌要买的铝合金的长,玻璃桌面的大小,公园里的圆形喷水池的占地面积,怎样测量学校水井的占地面积等问题,都让学生真切地感受到数学就在我们身边,数学与生活是密切相关的,用所学知识解决生活中的实际问题是一件多么快乐的事情,从而树立学好数学的信心。
透过这节课的教学,我深深感受到在教学中,教师要摆正自我的位置,真正将自主探索权交给学生,为学生带给思考与探索的机会,使每一学生用心参与活动,真正有效地参与活动,才能确保课堂教学的落实。
《圆的面积》这节课学生学习求曲线图形面积,也是求图形面积的一次重要转折。探究圆的面积计算公式,需要学生运用已有的学问阅历来实现“知到”的转化,最终推导出圆的面积计算公式。
在教学本课时,我重视学生活动阅历的积存。先引导学生回忆平行四边形的面积计算公式的推导过程,以实现学生对“知转化为”这一数学学习方法的迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经受“转化”的过程,进一步促进了学生对这一方法阅历的内化。重视培育学生“数学化”的口头表达力气。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的觉察,让学生深刻感受到化曲为直中“无限接近”的极限思想。在觉察拼成的。平行四边形的与圆的联系后,引导学生用“由于……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培育了学生思维的严密性和语言表述的准确性。
在教学过程中,我充分发挥多媒体课件的作用。在教学中,我通过课件演示,直观形象地再现了拼成的平行四边形与圆各局部之间的联系〔底相当于圆周长的一半,高相当于圆的半径〕,轻松化解了教学难点,让学生教简洁地推导出了圆的计算公式。
教学中的缺乏之处:
1、在引导学生“把圆转化成已学过的图形”进展面积争论时,缺乏有效的启发和缺乏必要的指导,如圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、我在引导学生觉察“拼成的图形和圆的联系”时,收的多,放的少,抑制了学生思维的主动性、独立性和制造性。